

### SLRCONSULTING.COM

#### SEPTEMBER 2024

# New Haven One-Way to Two-Way Conversion Study: Final Report

South Central Regional Council of Governments (SCRCOG) and the City of New Haven

### Prepared By:

SLR International Corporation 195 Church Street, 7th Floor New Haven, CT 06510 In Collaboration with:

Vanasse Hangen Brustlin, Inc. (VHB) 100 Great Meadow Road, Suite 200 Wethersfield, CT 06109









# 尜SLR

# New Haven One-Way to Two-Way Conversion Study: Final Report

### September 2024

# South Central Regional Council of Governments (SCRCOG)/City of New Haven

Prepared by:

SLR International Corporation 195 Church Street, 7th Floor, New Haven, Connecticut, 06510

In collaboration with:

VHB, Vanasse Hangen Brustlin, Inc. 100 Great Meadow Road, Suite 200, Wethersfield, Connecticut 06109

SLR Project No.: 141.20130.00003

Making Sustainability Happen

### **Table of Contents**

| 1.0 | Introducti | ion                                                                             | 1  |
|-----|------------|---------------------------------------------------------------------------------|----|
| 1.1 | Study A    | rea                                                                             | 2  |
| 1.2 | Past Stu   | dies and Current Area Projects                                                  | 4  |
|     | 1.2.1      | City of New Haven Two-Way Conversion Study (2014)                               | 4  |
|     | 1.2.2      | <i>Move New Haven</i> Study (2019) and Bus Rapid Transit Design (ongoing)       | 5  |
|     | 1.2.3      | Safe Routes for All Active Transportation Plan (2022)                           | 6  |
|     | 1.2.4      | New Haven On-Street Performance-Based Pricing – Monitoring and Evaluation Study | 7  |
|     | 1.2.5      | City of New Haven Street Projects                                               | 7  |
|     | 1.2.6      | Downtown Development                                                            | 7  |
| 2.0 | Existing ( | Conditions                                                                      | 8  |
| 2.1 | Multimo    | dal Infrastructure                                                              | 8  |
|     | 2.1.1      | Vehicular Infrastructure                                                        | 8  |
|     | 2.1.2      | Parking                                                                         | 14 |
|     | 2.1.3      | Pedestrian Infrastructure/Traffic Calming                                       | 14 |
|     | 2.1.4      | Bicyclist Infrastructure                                                        | 17 |
|     | 2.1.5      | Transit Infrastructure                                                          | 19 |
| 2.2 | Crash D    | ata                                                                             | 21 |
|     | 2.2.1      | Overall Crash Severities                                                        | 21 |
|     | 2.2.2      | Overall Predominant Crash Types                                                 | 21 |
|     | 2.2.3      | Serious Injury Crashes                                                          | 21 |
|     | 2.2.4      | Crashes Involving Non-Motorists                                                 | 23 |
|     | 2.2.5      | Nearby Fatal Crashes Involving Non-Motorists                                    | 24 |
| 2.3 | Existing   | Traffic Volume, Speed, and Travel Demand Data                                   | 26 |
|     | 2.3.1      | Peak Hour Intersection Turning Movement Traffic Counts                          | 26 |
|     | 2.3.2      | Non-Motorist Traffic                                                            | 31 |
|     | 2.3.3      | Travel Demand Mode Comparison                                                   | 31 |
|     | 2.3.4      | Street Segment All-Day Traffic, Historical Traffic Levels, and Speed Data       | 32 |
| 2.4 | Traffic F  | low Analysis                                                                    |    |
|     | 2.4.1      | Traffic Analysis Measures                                                       |    |
|     | 2.4.2      | Existing Traffic Flow Findings                                                  |    |
| 2.5 | Existing   | Conditions Public Input                                                         |    |



| 3.0 | Two -Way  | / Traffic Analysis                                  | 40  |
|-----|-----------|-----------------------------------------------------|-----|
| 3.1 | Two-Wa    | y Traffic Volumes                                   | 40  |
| 3.2 | Projecte  | d Future 2030 Two-Way Volumes                       | 46  |
| 3.3 | Two-Wa    | y Traffic Flow/Intersection Operations Analysis     | 49  |
| 4.0 | Concept   | Development                                         | 52  |
| 4.1 | Multimo   | dal Safe Streets Two-Way Street Design Concepts     | 52  |
|     | 4.1.1     | Church Street – Alternate 1                         | 52  |
|     | 4.1.2     | Church Street – Alternate 2                         | 57  |
|     | 4.1.3     | York Street – Alternate 1                           | 61  |
|     | 4.1.4     | York Street – Alternate 2                           | 65  |
|     | 4.1.5     | Chapel Street – Alternate 1                         | 69  |
|     | 4.1.6     | Chapel Street – Alternate 2                         | 72  |
|     | 4.1.7     | George Street                                       | 75  |
|     | 4.1.8     | Study Area Signal Upgrades                          | 79  |
| 4.2 | Case-St   | udy Examples                                        | 79  |
|     | 4.2.1     | Bus Rapid Transit Infrastructure                    | 79  |
|     | 4.2.2     | Safety Through Design                               | 82  |
| 4.3 | Safety E  | Benefits of Potential Street Redesign Modifications | 86  |
| 4.4 | Two-Wa    | y Concepts Public Input                             | 87  |
| 4.5 | City TTF  | P and Engineering Input                             |     |
| 5.0 | Preferred | Concept & Cost Estimates                            | 89  |
| 5.1 | Church    | Street – Preferred Concept                          |     |
| 5.2 | York Str  | eet – Preferred Concept                             | 94  |
| 5.3 | Chapel    | Street – Preferred Concept                          |     |
| 5.4 | George    | Street – Preferred Concept                          | 101 |
| 5.5 | Study A   | rea Traffic Signal Upgrades                         | 105 |
| 5.6 | Prelimin  | ary Cost Estimates                                  | 105 |





### **Tables in Text**

| Table 1.1 | Pros and Cons of Converting Downtown Streets from One-Way to Two-Way1               |
|-----------|-------------------------------------------------------------------------------------|
| Table 2.1 | Existing Characteristics of Streets winthin Study Area9                             |
| Table 2.2 | Crash Data Summary (2021 to 2022) - Intersections                                   |
| Table 2.3 | Crash Data Summary (2021 – 2022) – Midblock Locations23                             |
| Table 2.4 | Modal Traffic Count Comparison at Select Intersections Weekday Morning Peak<br>Hour |
| Table 2.5 | Existing Traffic Conditions Level of Service Summary                                |
| Table 3.1 | Two-Way Conversion Traffic-Flow Conditions Level of Service Summary50               |
| Table 4.1 | Street Redesign Safety Benefits                                                     |

### **Figures in Text**

| Figure 1.1  | Study Area                                                                            | 3   |
|-------------|---------------------------------------------------------------------------------------|-----|
| Figure 1.2  | Existing Conditions Map from 2014 Two-Way Conversion Final Report                     | 4   |
| Figure 1.3  | Proposed BRT Routes Overlaid on Existing Street Network                               | 5   |
| Figure 1.4  | SR4A Active Transportation Recommendations with Two-Way Conversion                    | 6   |
| Figure 2.1  | Church Street Corridor – Existing Characteristics                                     | .10 |
| Figure 2.2  | Chapel Street Corridor – Existing Characteristics                                     | .11 |
| Figure 2.3  | York Street Corridor – Existing Characteristics                                       | .12 |
| Figure 2.4  | George Street Corridor – Existing Characteristics                                     | .13 |
| Figure 2.5  | On-Street Parking in Downtown                                                         | .14 |
| Figure 2.6  | Low-Visibility versus High-Visibility Crosswalks                                      | .15 |
| Figure 2.7  | Leading Pedestrian Interval                                                           | .16 |
| Figure 2.8  | The Multiple-Threat Collision                                                         | .16 |
| Figure 2.9  | Mid-Block Raised Crosswalk on York Street                                             | .17 |
| Figure 2.10 | Parking-Protected Bike Lane on Chapel Street between Temple Street and College Street | .18 |
| Figure 2.11 | Sidewalk-level Bike Lane South Frontage Road Downtown Crossing                        | .18 |
| Figure 2.12 | Contra-Flow Bike Lane – High Street at Chapel Street                                  | .19 |
| Figure 2.13 | Bicycle Traffic Signal Wall Street at Church Street                                   | .19 |
| Figure 2.14 | Map of New Haven Public Bus System                                                    | .20 |
| Figure 2.15 | Bus Shelters Downtown                                                                 | .21 |
| Figure 2.16 | Crash Heatmap (2021 to 2022)                                                          | .25 |
| Figure 2.17 | Existing Vehichle Volumes – Morning Peak Hour                                         | .27 |
| Figure 2.18 | Existing Vehichle Volumes – Evening Peak Hour                                         | .28 |



| Figure 2.19 | Existing Pedestrian Volumes – Morning Peak Hour                                           |
|-------------|-------------------------------------------------------------------------------------------|
| Figure 2.20 | Existing Pedestrian Volumes – Evening Peak Hour                                           |
| Figure 2.21 | Traffic Operations LOS Map – Church Street                                                |
| Figure 2.22 | Traffic Operations LOS Map – Chapel Street                                                |
| Figure 2.23 | Traffic Operations LOS Map – York Street                                                  |
| Figure 2.24 | Traffic Operations LOS Map – George Street                                                |
| Figure 2.25 | Opinion Poll                                                                              |
| Figure 3.1  | Two-Way Conversion Traffic Volume Re-Routing Estimates – Morning Peak Hour41              |
| Figure 3.2  | Two-Way Conversion Traffic Volume Re-Routing Estimates – Afternoon Peak Hour42            |
| Figure 3.3  | Two-Way Traffic Volume Scenario at Current Traffic Levels – Morning Peak Hour44           |
| Figure 3.4  | Two-Way Traffic Volume Scenario at Current Traffic Levels – Afternoon Peak Hour45         |
| Figure 3.5  | Two-Way Traffic Volume Scenario at Projected 2030 Traffic Levels – Morning Peak Hour…47   |
| Figure 3.6  | Two-Way Traffic Volume Scenario at Projected 2030 Traffic Levels – Afternoon Peak Hour.48 |
| Figure 3.7  | Additional Ways That Traffic Can Change When Streets Change51                             |
| Figure 4.1  | Two-Way Conversion Concept Design – Church Street – Aternate 155                          |
| Figure 4.2  | Two-Way Conversion Concept Design – Church Street - Alternate 156                         |
| Figure 4.3  | Two-Way Conversion Concept Design – Church Street - Alternate 259                         |
| Figure 4.4  | Two-Way Conversion Concept Design – Church Street - Alternate 260                         |
| Figure 4.5  | Two-Way Conversion Concept Design – York Street - Alternate 163                           |
| Figure 4.6  | Two-Way Conversion Concept Design – York Street - Alternate 164                           |
| Figure 4.7  | Two-Way Conversion Concept Design – York Street - Alternate 267                           |
| Figure 4.8  | Two-Way Conversion Concept Design – York Street - Alternate 268                           |
| Figure 4.9  | Two-Way Conversion Concept Design – Chapel Street - Alternate 171                         |
| Figure 4.10 | Two-Way Conversion Concept Design – Chapel Street - Alternate 274                         |
| Figure 4.11 | Two-Way Conversion Concept Design – George Street77                                       |
| Figure 4.12 | Two-Way Conversion Concept Design – George Street                                         |
| Figure 4.13 | Center Running BRT with Right-Side Boarding – Boston, MA                                  |
| Figure 4.14 | Center-Running BRT with Right-Side Boarding – Cleveland, OH81                             |
| Figure 4.15 | Center-Running BRT with Left-Side Boarding – Albuquerque, NM81                            |
| Figure 4.16 | Curbside-Running Bus-Only Lane – New York, NY82                                           |
| Figure 4.17 | Raised-Intersection – New Haven, CT82                                                     |
| Figure 4.18 | Pedestrian Refuge Island – Nashville, TN83                                                |
| Figure 4.19 | Curb Extensions/Corner Bump-outs – West Hartford, CT84                                    |
| Figure 4.20 | Parking-Protected Sidewalk-Level Bike Lane – Cambridge, MA85                              |
|             |                                                                                           |





| Figure 4.21 | Protected Intersection – Seattle, WA                | 85   |
|-------------|-----------------------------------------------------|------|
| Figure 5.1  | Two-Way Conversion Preferred Design – Church Street | 92   |
| Figure 5.2  | Two-Way Conversion Preferred Design – Church Street | 93   |
| Figure 5.3  | Two-Way Conversion Preferred Design – York Street   | 96   |
| Figure 5.4  | Two-Way Conversion Preferred Design – York Street   | 97   |
| Figure 5.5  | Two-Way Conversion Preferred Design – Chapel Street | .100 |
| Figure 5.6  | Two-Way Conversion Preferred Design – George Street | .103 |
| Figure 5.7  | Two-Way Conversion Preferred Design – George Street | .104 |

### **Appendices**

- Appendix A Level of Service Definitions
- Appendix B Traffic Capacity Analyses Synchro Printouts
- Appendix C Public Input Summaries
- Appendix D Preliminary Cost Estimates
- Appendix E Concepts





### 1.0 Introduction

Many of New Haven's downtown streets were converted from two-way to one-way after World War II to accommodate commuting patterns that resulted from suburbanization. The Covid-19 Pandemic notwithstanding, a resurgence of New Haven's downtown has been actively unfolding over the past 20 plus years. More residential housing is being constructed, and Downtown Crossing is knitting local streets, divided by the former Route 34 Oak Street Connector, back together – necessitating a re-evaluation of the gridded street network. Moreover, there is now a focus on *Vision Zero* as a means to combat traffic safety issues, to better accommodate sustainable modes of transportation, and to address transportation equity. Furthermore, given that fossil-fueled transportation is the largest contributor to greenhouse gas emissions, the opportunity to shift some driving trips to more sustainable non-motorized and/or transit trips, and to reduce circuitous driving distances within downtown, is a main part of this project's imperative.

Two-way streets will allow for more convenient and safer navigation of downtown streets that benefit drivers, cyclists, and transit riders alike. The benefits of converting one-way streets to be two-way outweigh the cons and include the following summarized in **Table 1.1**.

| Pros                                                                                                                                                                     | Cons                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| More direct/less circuitous <i>localized</i> motorist (and bicyclist) routing.                                                                                           | Travel-time of some automobile traffic going <i>through</i> , instead of to, the downtown may be affected.                                                                 |
| Slower automobile traffic, resulting in safer streets for everyone including motorists.                                                                                  | Two-way streets may generally move less<br>automobile traffic during a given timeframe on any<br>individual street or intersection.                                        |
| Reduced potential for multiple-threat pedestrian<br>conflicts when converting same-direction multiple-<br>vehicle-lane streets to be one through-lane each<br>direction. | Pedestrians and other non-motorists will have to check for oncoming vehicles in two directions rather than one.                                                            |
| Simplifies on-street parking by eliminating left-hand side parallel parking                                                                                              | On-street loading, deliveries, and short-term<br>pickup may lose some of the ability to double-park<br>(albeit not legally) in one of two same-direction<br>through lanes. |
| More comfortable and liveable built environment for non-motorists.                                                                                                       |                                                                                                                                                                            |
| Potential to convert some signalized intersections<br>to stop-sign control, thus saving on long-term<br>maintenance costs.                                               |                                                                                                                                                                            |
| Simplifies transit routing and allows for inbound and outbound bus stops to be on the same street.                                                                       |                                                                                                                                                                            |
| Economic benefits to storefronts by being visible from two approaching directions instead of one.                                                                        |                                                                                                                                                                            |
| Likely less total aggregate travel-time for all street users and less Vehicle-Miles-Traveled (VMT).                                                                      |                                                                                                                                                                            |

| Table 1.1 | Pros and Cons of Converting Downtown Streets from One-Way to Two-Way |
|-----------|----------------------------------------------------------------------|
|           |                                                                      |





### 1.1 Study Area

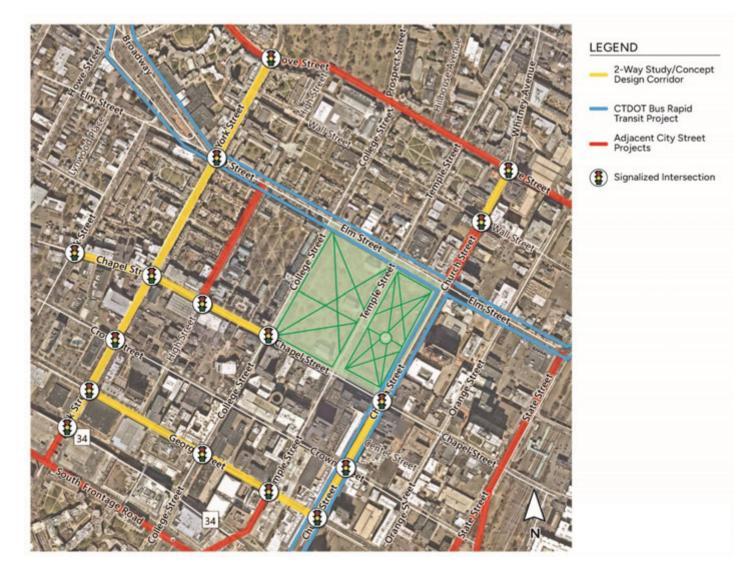
This 2023 *One-Way to Two-Way Study* builds upon the 2014 *One-Way to Two-Way Study* initial planning effort and considers plans and projects proposed over the past decade. This study includes two-way conversion concept-design plans at a preliminary engineering level that brings the actual conversion of the following downtown street segments from one-way to two-way another step closer to implementation:

- Chapel Street from College Street to Park Street
- York Street from Martin Luther King, Jr. (M.L.K. Jr.) Boulevard to Grove Street
- George Street from York Street to Church Street
- Church Street from George Street to Grove Street

Specifically, the study area includes the following 17 intersections:

- Chapel Street at Park Street
- Chapel Street at York Street
- Chapel Street at High Street
- Chapel Street at College Street
- York Street at Grove Street
- York Street at Elm Street/Broadway
- York Street at Crown Street
- York Street at George Street
- York Street at MLK Jr. Boulevard
- George Street at High Street
- George Street at College Street
- George Street at Temple Street
- George Street at Church Street
- Church Street at Grove Street
- Church Street at Chapel Street
- Church Street at Center Street
- Church Street at Crown Street

It should be noted that Chapel Street east of College Street, George Street east of Church Street, Church Street south of George Street, and Ashmun Street north of York Street are already two-way, meaning that the street segments that are the focus of this concept-design study are linchpin to the downtown as a whole. It should also be noted that the section of Church Street between Chapel Street and Wall Street was not originally part of the study-area scope that was developed with the City of New Haven and the South Central Regional Council of Governments (SCRCOG), and that the intersection of Church Street at Elm Street has not been analyzed in detail herewith. Nonetheless, for continuity of design alignment, the entire






stretch of Church Street from George Street to Grove Street is included and shown the concept design plans that have been developed and are shown further below as part of this study.

As is also discussed further below, there are multiple city and Connecticut Department of Transportation (CTDOT) street/intersection redesign projects that are happening in parallel with this effort that intersect and overlap with this study area on some street segments. These include a Bus Rapid Transit (BRT) project that is to route along Elm Street and a portion of Church Street (and which will analyze in detail the intersection of Church Street at Elm Street), the conversion of Grove Street to two-way, the conversion of one block of York Street between South Frontage Road and M.L.K. Jr. Boulevard to two-way, the closure of High Street to automobile traffic between Chapel Street and Elm Street, the conversion to two-way of some of Temple Street as part of Downtown Crossing Phase-4, as well as a major redesign of State Street between Downtown and Wooster Square. **Figure 1.1** shows the study area and extent to which these puzzle pieces fit together.

### Figure 1.1 Study Area







### **1.2 Past Studies and Current Area Projects**

This section includes summary of past studies and current projects in and around downtown New Haven that are relevant to this current concept-design study.

### 1.2.1 City of New Haven Two-Way Conversion Study (2014)

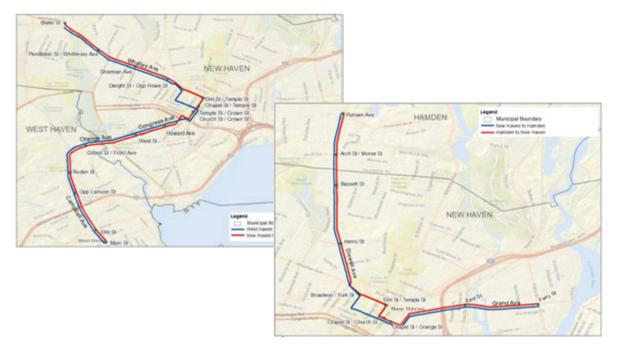
The original <u>*Two-Way Conversion*</u> study was conducted in 2013 to 2014, and had a larger study area than this current study. **Figure 1.2** provides an illustration of the original (2013 to 2014) study area and shows how many of New Haven's downtown streets are one-way. Except for a few blocks of street, all the one-way streets then are still currently one-way. The 2014 two-way conversion study did the yeoman's work of introducing this topic to the public, gaining input/feedback, and producing a number of recommendations in support of two-way conversion. After a multiple-day community design charrette, it was learned that residents support a one-way to two-way street conversion that slows traffic and makes streets easier to navigate.

### Figure 1.2 Existing Conditions Map from 2014 Two-Way Conversion Final Report








During the 2013 to 2014 two-way study effort, it was learned that New Haven wanted:

- Improved connectivity of bike and pedestrian facilities between downtown, the train station, and surrounding districts/neighborhoods
- Elimination of pedestrian crashes
- A solution for unsafe mid-block crossings
- Ways to address wrong-way bicycling
- An expanded bicycle network
- Simplified bus routes

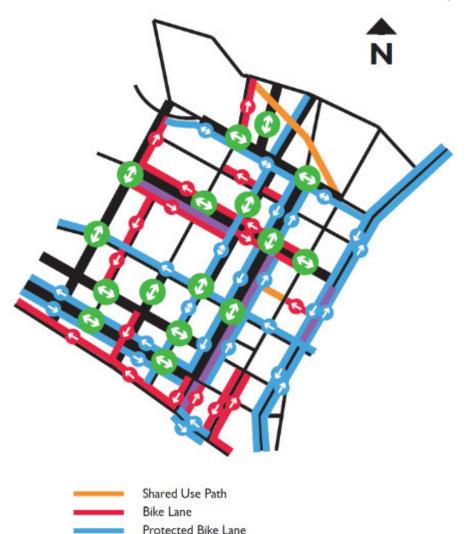
Some of the 2014 study's short-term recommendations have since been implemented, including the installation a contra-flow bike lane on Court Street downtown. Unfortunately, however, most of the 2014 study's recommendations have not been implemented due largely to funding issues.

#### 1.2.2 Move New Haven Study (2019) and Bus Rapid Transit Design (ongoing)

The Move New Haven Study focused on bus transit and made recommendations about how to improve New Haven's bus system to be more convenient and operationally efficient. One of the key recommendations from this study, shown in **Figure 1.3**, is to create two BRT routes that pass through the study area – to and from Hamden, and to and from West Haven via the Grand Avenue and the Whalley Avenue corridors, respectively. To operate most efficiently, these BRT routes would require redesign of Elm Street and Church Street downtown to be two-way at least for bus traffic. CTDOT recently started an effort to facilitate a redesign of Elm Street to accommodate BRT, which is the reason that Elm Street is not a focus of this study.



#### Proposed BRT Routes Overlaid on Existing Street Network Figure 1.3






### 1.2.3 Safe Routes for All Active Transportation Plan (2022)

The overarching goal of the <u>Safe Routes for All (SR4A) Active Transportation Plan</u> is to increase non-automobile mode share in New Haven over the next ten years by building out a network of safe and comfortable bicycle lanes throughout the city, improving pedestrian and bicyclist safety, and improving bus rider accommodations by adding more bus stop shelters. SR4A Active Transportation Plan also includes a small section about the one-way to two-way conversion with recommendations for many of the streets downtown, as shown on **Figure 1.4**. Included are recommendations for adding protected bike lanes to a future two-way George Street, adding a protected bike lane to Chapel Street, and adding protected bike lanes to a future two-way Church Street, not to mention adding bus-only lane(s) to Church Street. The SR4A plan also calls for adjusting pedestrian signal timings at intersections including adding Leading Pedestrian Intervals (LPI).

### Figure 1.4 SR4A Active Transportation Recommendations with Two-Way Conversion







Dedicated Bus Lane

# 1.2.4 New Haven On-Street Performance-Based Pricing – Monitoring and Evaluation Study

The <u>New Haven On-St Parking Performance-Based Pricing Report</u> (2018) analyzed parking demand by means of parking meter payment data for the entirety of 2018 – morning through evening hours – under typical weekday conditions. After analyzing the year's worth of data, the study recommended increases or decreases to the parking meter price by block, relative to demand. This study recommended an increase to parking meter rates on blocks with high demand, and a decrease to parking meter rates blocks with lower than optimal demand (generally lower than 60 to 80 percent parking occupancy). Some blocks Downtown were recommended for meter rate increases for one part of the day and decreases for another part of the day. It is important to mention this study and the need to appropriately price parking, as research has found that underpriced on-street parking can induce demand for on-street parking relative to nearby off-street parking, induce driving relative to other transportation mode options, and result in motorists circling the block (cruising) for the random underpriced empty on-street spot thus creating unnecessary traffic.

### 1.2.5 City of New Haven Street Projects

New Haven's Transportation, Traffic & Parking Department and Engineering Department currently have multiple roadway/street projects that are in planning/design that will connect with this two-way conversion effort or are nearby and thus necessitate some degree of cross-project coordination. **Figure 1.1** shows the extent to which many of the streets downtown may see changes in the coming years.

There are planned roadway and intersection upgrades along South Frontage Road in the area of Yale New Haven Hospital (YNHH) and the Air Rights Parking Garage. A block of York Street in this area, between M.L.K. Jr. Boulevard and South Frontage Road, is planned to be converted to two-way to better connect with York Street between South Frontage Road and Howard Avenue that was converted to two-way around 2020/2021. There is a quick-build plan to add a bike lane to George Street in this area. As part of the ongoing Downtown Crossing development (Phase 4), Temple Street is to be extended to the south to connect with South Frontage Road at Congress Avenue and be converted to two-way between M.L.K. Jr. Boulevard and George Street.

There is a city project to give Whitney Avenue a road-diet and bike lanes between Trumbull Street and the Hamden town line, which along with converting Church Street to two-way, and when including Church Street South, will make most, if not all, of this corridor two-way from Long Wharf through Hamden and points north.

The city is engineering a redesign of lower State Street to reallocate and convert some vehicle lanes to become a cycle-track that will become part of the Farmington Canal Trail and to facilitate the construction of new buildings within the several parking lots that dot the east side of lower State Street.

As mentioned earlier, Elm Street and portions of Church Street are expected to be modified to accommodate the state's BTR project, and Grove Street may be converted to two-way to allow for another eastbound traffic route north of the Green should Elm Street become two-way.

### 1.2.6 Downtown Development

There are also numerous developments in New Haven that are currently either under construction or approved to be built. Within Downtown, these developments include buildings being constructed near the study area at George Street and Orange Street, on Chapel Street





between Church Street and Orange Street, on Orange Street between EIm Street and Wall Street, and as part of Downtown Crossing between M.L.K. Jr. Boulevard and South Frontage Road. All these developments are generating more need for the streets downtown to become more multimodal. Most of these developments are mixed-use to some extent, but overall include much residential, and as such are oriented toward living, working, shopping, and recreation as part of a walkable downtown lifestyle. The current building boom in the center of New Haven points to a yet unmet market demand for downtown/urban living and therefore a greater need for safer and more comfortable streets that better accommodate walking, bicycling/ micromobility, and transit. To the extent possible, the opportunity to address multimodal needs and safety can and must take place as streets are redesigned, such as in this case with this effort to convert from one-way to two-way.

### 2.0 Existing Conditions

As a starting point for this one-way to two-way study, the project team assimilated information on existing study-area street infrastructure and street usage, previous studies, and planned projects in and around the study area, as well as compiled recent public input regarding the proposed two-way conversion.

### 2.1 Multimodal Infrastructure

This section includes an overview of automobile, walking, bicycling, and transit infrastructure in the study area. **Table 2.1**, and **Figure 2.1** through **Figure 2.4**, summarize this information.

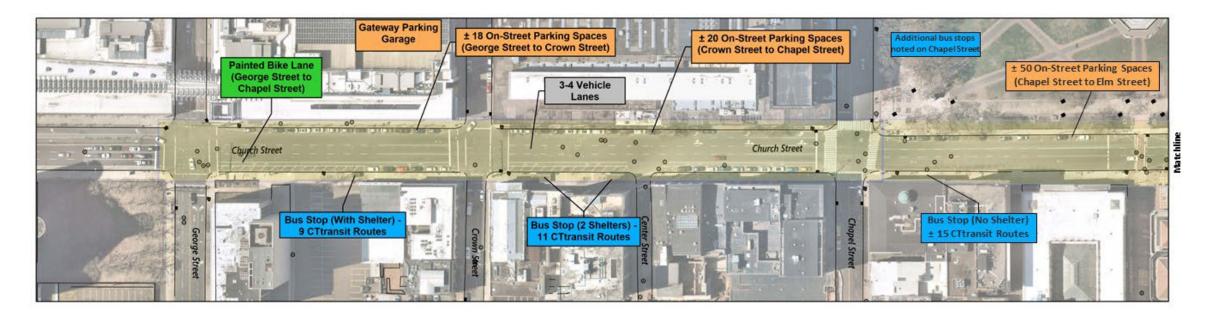
### 2.1.1 Vehicular Infrastructure

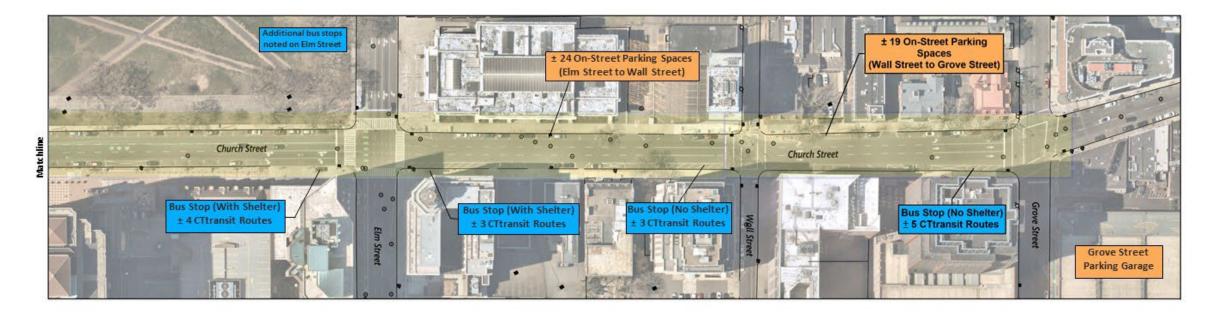
In terms of infrastructure devoted to the movement of motor vehicles, each study-area street currently has at least two same-direction vehicle lanes. Church Street and George Street have upwards of four vehicle lanes headed in the same direction at certain locations in the study area. While multiple lanes per direction can efficiently move automobile traffic on any single street, they can likely result in speeding, and for some motorists to unsafely weave between lanes jockeying for position, particularly during off-peak times.

The majority of the study intersections are signalized, with the exception of the unsignalized intersections of Church Street at Center Street, and George Street at High Street. A number of the signalized intersections downtown are noted to contain old signal equipment. Conversion to two-way will likely necessitate signal equipment upgrades to bring old signal equipment to current standards, and to importantly install signal heads (green-yellow-red lights) that face newly two-way approaches to the intersections. Conversion to two-way may also present the opportunity to unsignalize some intersections where signalization will no longer be warranted; to change some intersections from signal-control to instead operate with only stop-sign(s).

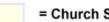





|                                       | Church Street                                                                                                                   | Chapel Street                                                   | York Street                                                                                                                                                                        | George Street                                                                                                                                                                                                      |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Between<br>George Street and Grove<br>Street                                                                                    | Between<br>College Street and<br>Park Street                    | Between<br>M.L.K. Jr. Boulevard<br>and Grove Street                                                                                                                                | Between<br>York Street and<br>Church Street                                                                                                                                                                        |
| Number of<br>Vehicle<br>Traffic Lanes | 3 Lanes northbound and<br>4 <sup>th</sup> (turn) lane at approach<br>to Chapel Street                                           | 2 Lanes<br>westbound                                            | 2 Lanes<br>northbound and 3 <sup>rd</sup><br>(turn) lane at<br>approaches to<br>George Street and<br>Elm Street<br>Only 1 lane<br>northbound from<br>Elm Street to<br>Grove Street | 2 Lanes eastbound<br>from York Street to<br>College Street<br>3 Lanes eastbound<br>from College<br>Street to Temple<br>Street<br>4 Lanes (2 are turn<br>lanes) eastbound<br>from Temple Street<br>to Chapel Street |
| Bike<br>Facilities                    | Painted bike lane<br>northbound from George<br>Street to Chapel Street<br>Faded sharrows from<br>Chapel Street to Elm<br>Street | Faded Sharrows                                                  | Painted bike lane<br>northbound from<br>York Street to<br>Grove Street                                                                                                             | Faded Sharrows                                                                                                                                                                                                     |
| Bus Stops                             | 7 Bus Stops,<br>3 of which have no shelter<br>(North of Chapel Street,<br>south of Wall Street, and<br>south of Grove Street)   | 1 Bus Stop                                                      | 4 Bus Stops,<br>3 of which have no<br>shelter (south of<br>George Street,<br>north of Chapel<br>Street, south of<br>Elm Street).                                                   | 2 Bus Stops,<br>1 of which has no<br>shelter (West of<br>Temple Street)                                                                                                                                            |
| Bus Routes                            | 18 different CTtransit<br>routes go on at least a<br>portion of Chapel Street in<br>the study area<br>2 Yale Shuttle routes     | 7 CTtransit routes                                              | 5 CTtransit routes<br>2 Yale Shuttle<br>routes                                                                                                                                     | 6 CTtransit routes<br>2 Yale Shuttle<br>routes                                                                                                                                                                     |
| On-Street<br>Parking                  | 130 Parking Spaces<br>(Portions both sides)                                                                                     | 78 Parking<br>Spaces (Portions<br>both sides)                   | 147 Parking<br>Spaces (Portions<br>both sides)                                                                                                                                     | 24 Parking Spaces (south side only)                                                                                                                                                                                |
| Traffic<br>Calming                    | None                                                                                                                            | Curb extensions<br>between College<br>Street and High<br>Street | 2 raised midblock<br>crosswalks.<br>½ corner curb-<br>extension<br>southwest of Elm<br>Street                                                                                      | None                                                                                                                                                                                                               |
| Number of<br>Street<br>Intersections  | 6 Signalized Intersections<br>1 Pedestrian Signal<br>(Midblock at Green)<br>1 Unsignalized<br>(At Center Street)                | 4 Signalized<br>Intersections                                   | 6 Signalized<br>Intersections                                                                                                                                                      | 4 Signalized<br>Intersections<br>1 Unsignalized<br>(At High Street)                                                                                                                                                |


### Table 2.1 Existing Characteristics of Streets winthin Study Area






#### **Church Street Corridor – Existing Characteristics** Figure 2.1





### **Church Street Corridor Existing Characteristics** New Haven, CT

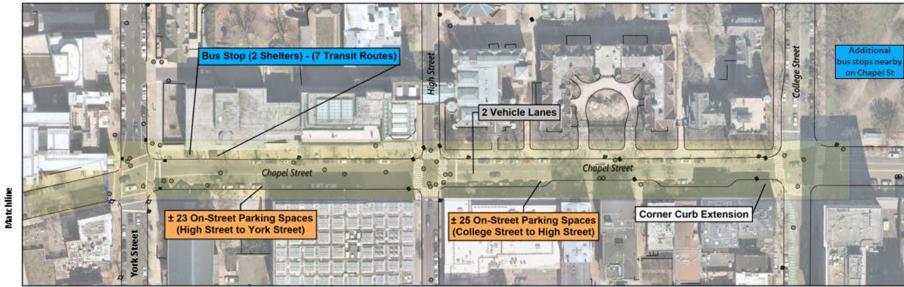


= Church Street Study Corridor



± 18 CTtransit Routes + Yale Shuttle

±130 On-Street Parking Spaces along **Church Street Study Corridor** 


# **%SLR**







#### Chapel Street Corridor – Existing Characteristics Figure 2.2





# **Chapel Street Corridor Existing Characteristics**

New Haven, CT

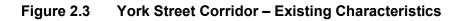


= Chapel Street Study Corridor

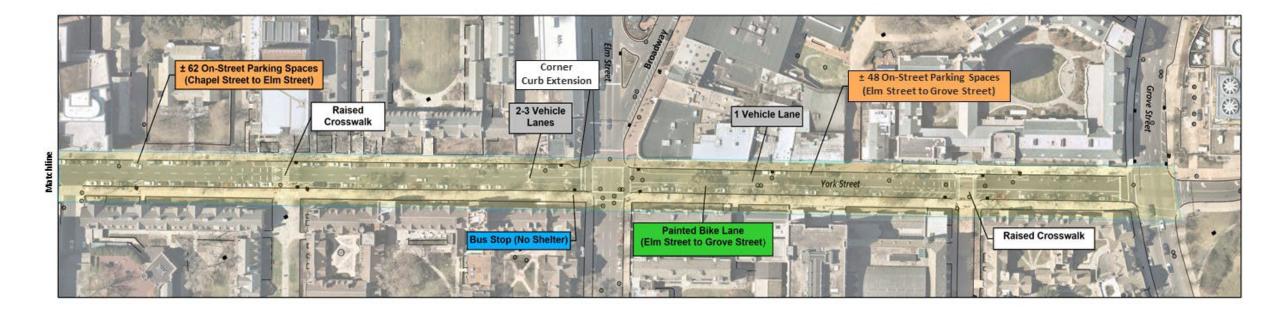
± 7 CTtransit Routes

± 78 On-Street Parking Spaces along **Chapel Street Study Corridor** 

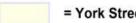
## **%SLR**







Aato





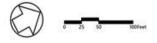






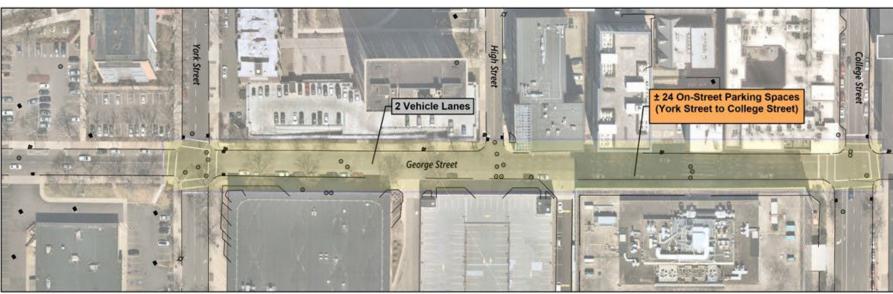

### **York Street Corridor Existing Characteristics** New Haven, CT

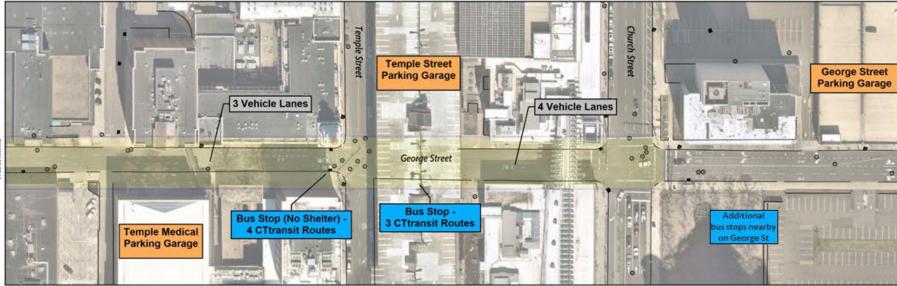



= York Street Study Corridor



± 5 CTtransit Routes + Yale Shuttle


± 147 On-Street Parking Spaces along York Street Study Corridor


# **%SLR**





#### George Street Corridor – Existing Characteristics Figure 2.4





# **George Street Corridor**

Existing Characteristics New Haven, CT



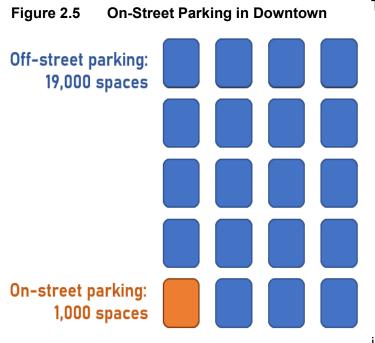
= George Street Study Corridor

± 6 CTtransit Routes

± 24 On-Street Parking Spaces along George Street Study Corridor










### 2.1.2 Parking

While motor vehicle movement is often a focus of roadways and streets, automobile parking is Is a large part of the picture. With the exception of three blocks (George Street between College Street and Church Street, and York Street between M.L.K. Jr. Boulevard and George Street), there is on-street parking on at least a portion of the block-to-block street segments within the study area. There is a total of approximately 380 on-street parking spaces along the study-area lengths of street, with York Street having the most on-street parking, and George Street having the least on-street parking in the study area.

It must also be noted that the vast majority of parking in downtown New Haven is not what is visible on-street but is in off-street parking facilities, in large parking garages and lots. As illustrated in **Figure 2.5**, from the 2021 *Downtown Parking in New Haven* report, around 95 percent of all the parking is off-street. Not only that, but the approximately 380 on-street parking spaces along this study's street segments are only a fraction of all the on-street parking downtown when taking into account all of the downtown streets.

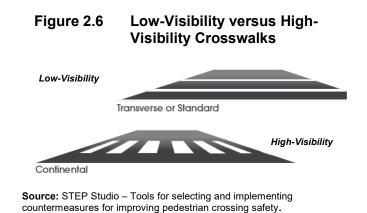


Source: Downtown Parking in New Haven (2021)

There are large off-street parking facilities generally within a 1 to 2 block walk throughout the study area, which are operated either by the city parking authority (Park New Haven), Yale, and/or the private sector. Review of real-time parking usage data from the Park New Haven website finds that downtown's large public parking garages have only been around half to two-thirds full during the middle of the day on weekdays. This is important to note, in that there are more empty offstreet parking spaces than there are total on-street parking spaces in the study area. For instance, the Crown Street Garage and the Temple Street Garage alone combined have had at least 300 empty parking spaces during the middle of the weekday. When including all the other garages nearby, there are typically two to three times as

many empty off-street parking spaces at any given time. In other words, hypothetically all the approximately 380 on-street parking spaces along the study area street segments, even if full, could fit within the empty parking supply in the garages nearby.

### 2.1.3 Pedestrian Infrastructure/Traffic Calming


While sidewalks, crosswalks, and pedestrian signals are plentiful downtown, opportunities remain for improvement to the pedestrian realm. The main goals when it comes to pedestrian mobility and safety on downtown streets are to reduce pedestrian crossing distances and vehicle traffic speeds as much as feasible, enhance the conspicuity of crosswalks, and increase pedestrian signal walk times and/or frequencies.





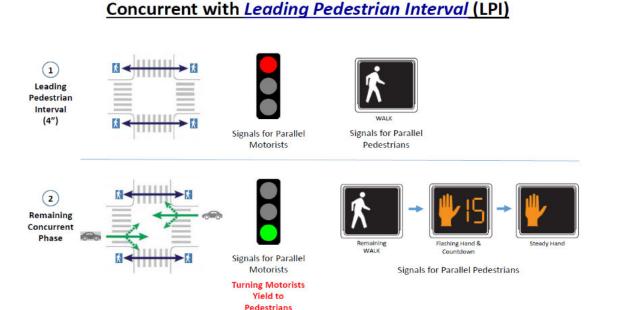
While almost all the intersections downtown have crosswalks, most are low-visibility transverse-line crosswalks and not high-visibility longitudinal bar (continental) crosswalks. **Figure 2.6** shows the difference between these two crosswalk types.

Most of the signals downtown do have pedestrian WALK/DON'T WALK countdown indications; although, some do not – including the intersection of Church Street at Wall Street in the study area.



The pedestrian signals, at many of the signalized intersections that have them, operate with what are known as an exclusive pedestrian phase, where all vehicle traffic gets a red light when the pedestrian walk light turns on for every crosswalk. A number of these intersections, because of the one-way streets, additionally have concurrent pedestrian phases where some of the crosswalks get a walk signal when parallel, and in this case non-conflicting, automobile traffic gets a green light. An example of this is Church Street at Grove Street, where the eastern-leg crosswalk at the intersection gets a walk signal while northbound Church Street automobile traffic gets a green light, the southern-leg crosswalk gets a walk signal while westbound Grove Street has a green light, and there is an exclusive pedestrian phase that occurs between when Church Street and Grove Street separately get green lights.

(Federal Highway Administration (FHWA))


Exclusive pedestrian signal phases are a hallmark of large intersections with multiple throughlanes per direction in Connecticut, such as in downtown New Haven and on suburban arterials. A downside, however, that often comes with large intersections and the exclusive pedestrian phase, is that such intersections often get programmed to have long signal cycle-lengths (the total green-yellow-red time to service all street approaches and pedestrian walk/don't walk signals once) which can result in long wait times for pedestrians. With human behavior being what it is, some pedestrians who experience a long wait for the walk light end up deciding to cross without it when they perceive enough of a gap in traffic – particularly in downtown areas. This decision can be catastrophic, should the pedestrian misjudge a gap in traffic, the speed of traffic and/or the direction of approaching traffic at an intersection, and because drivers in this case may not be expecting a pedestrian to cross at that time.

Some cities, including New Haven, have begun to incorporate what is known as a Leading Pedestrian Interval (LPI), also known as a pedestrian head-start, instead of the exclusive pedestrian phase. An example of such installation in New Haven is at the intersection of Chapel Street and High Street. LPI is a hybrid of the concurrent pedestrian signal phase and the exclusive pedestrian signal phase whereby the pedestrian walk signal starts exclusively for 3 to 7 seconds for half of the crosswalks before the parallel flow of vehicle traffic gets a green light, during which time the remainder of the pedestrian walk phase runs concurrent with the parallel flow of traffic. LPI is especially feasible on streets with fewer lanes per direction and importantly can sometimes reduce wait times for both pedestrians and motorists compared to the exclusive pedestrian signal phase configuration, reducing the likelihood of some pedestrians to cross without the walk signal that was mentioned above. **Figure 2.7** illustrates how LPI works.





### Figure 2.7 Leading Pedestrian Interval



Source: CTDOT

In downtown settings, some pedestrians also have a tendency to cross midblock not at a crosswalk or pedestrian signal. Again, human behavior is at play here. It should be noted that midblock crossing activity is less worrisome the fewer lanes of vehicle traffic per direction there are however, such midblock crossings, at or not at a crosswalk, can be especially worrisome when there are multiple vehicle lanes in the same direction due to the multiplethreat concern that is illustrated in

#### Figure 2.8 The Multiple-Threat Collision



Source: City of Haven Two-Way Conversion Study (of 2014)

**Figure 2.8**. The multiple-threat collision occurs when a vehicle in one lane stops or yields for a pedestrian and in doing so temporarily blocks view of the pedestrian to another same-direction approaching motorist who doesn't see the pedestrian until it's too late.

All the one-way streets that are the focus of this concept-design study unfortunately have the potential for the multiple-threat collision today, but this situation could be reduced or eliminated if same-direction multiple-lane streets are changed to instead generally be one lane each direction. As traffic is likely to at least be somewhat slower through one-way to two-way conversion, all travelers will be less at risk for serious injury on account of reduced vehicle speeds, including motorists and even pedestrians who cross mid-block.

The prior (2014) two-way planning study identified mid-block pedestrian activity throughout downtown. Since that time, to address pedestrian behavior and demand for mid-block crossings





at some locations, particularly at long stretches between signals, the City of New Haven, in partnership with Yale University, installed raised mid-block crosswalks at two locations on York Street. Raised-crosswalks, and similar raised-intersections, provide both traffic calming and Americans with Disabilities Act (ADA) improvements in that they physically slow traffic and allow for the crosswalk itself to remain generally level with the sidewalk (eliminating the need for pedestrian curb ramps), respectively. These two mid-block crosswalks also contain Rectangular Rapid-Flashing Beacons (RRFB), which are flashing lights typically on a crosswalk sign that are push-button activated. **Figure 2.9** shows the midblock raised crosswalk on York Street between Chapel Street and Elm Street.



### Figure 2.9 Mid-Block Raised Crosswalk on York Street

Source: Google maps

Raised intersections are not (yet) prominent in downtown but exist in some other parts of New Haven and are proposed to be installed nearby on South Frontage Road by York Street in the vicinity of YNHH. Another type of pedestrian safety infrastructure at intersections that is largely lacking in downtown New Haven are corner curb-extensions. Also know as bump-outs, this street design component reduces the curb-to-curb crossing walk distance and amount of time that a pedestrian is exposed in moving traffic lanes. There are curb-extensions in the study area only on Chapel Street between College Street and High Street, and at the southwest corner of York Street at Elm Street. Finally, No-Turn-on-Red signs are present at many, but not all, the study-area intersections. No-Turn-on-Red signs are often installed signs when sight distances are restricted and/or in locations with large amounts of pedestrian activity.

### 2.1.4 Bicyclist Infrastructure

Bicycle infrastructure within the study corridors consist of basic painted bike lanes on three blocks of Church Street between George Street and Chapel Street, and on two blocks of York Street from Elm Street to Grove Street. Sharrows (shared-lane pavement markings placed in the vehicle traffic lane) are also present, although are faded, on other parts of Church Street and on George Street and Chapel Street.

It should be noted that sharrows are generally not considered acceptable unless paired with traffic calming and/or unless they are located on low-speed, low-volume, space-constrained streets such as single-lane one-direction streets. The faded sharrow markings that exist downtown today were installed during a different era some 10 to 15 years ago. The basic painted bike lane, while acceptable, is also not currently considered best-practice due to its placement on the city streets often directly between moving traffic and the driver's side of on-street parking.





Protected/separated bike lanes, such as those that are placed away from moving traffic between the sidewalk and typically the passenger-side of on-street parking, and/or those that may be curb-separated at the same level as the sidewalk (with or without the presence of on-street parking), are generally considered now to be better bicycle facility design options – especially if proper attention is given to their design at intersections. The city recently installed a parking-protected bike lane on Chapel Street east of College Street, as show in **Figure 2.10**, indicating a step in the right direction.

### Figure 2.10 Parking-Protected Bike Lane on Chapel Street between Temple Street and College Street



Image Source: Engineering

Sidewalk-level bike lanes also now exist nearby the study area on segments of South Frontage Road and M.L.K. Jr. Boulevard that were installed as part of the ongoing Downtown Crossing project, as shown on **Figure 2.11**.



### Figure 2.11 Sidewalk-level Bike Lane South Frontage Road Downtown Crossing

Source: Google Maps

Contra-flow bike lanes also exist in the study area on High Street at Chapel Street and on Wall Street at Church Street. Shown on **Figure 2.12**, the contra-flow bike lane can be appropriate on single-direction one-lane streets.







Figure 2.12 Contra-Flow Bike Lane – High Street at Chapel Street

Source: Google Maps

Bicycle traffic signals are also present at these two intersections of High Street at Chapel Street and on Wall Street at Church Street. **Figure 2.13** shows the bicycle traffic signal on Wall Street at Church Street.

Bike parking is additionally an important part of bicycle infrastructure. Public bike racks are provided on Church Street next to City Hall and near the New Haven County Courthouse, and on Chapel Street at The Shops at Yale.

### 2.1.5 Transit Infrastructure

Transit in this study area is robust, with over 20 CTtransit, Yale Shuttle, and YNHH Shuttle routes traversing the study area – and most making stops on the streets in the study area, given that the New Haven Green, bounded by the street segments in the study area, is the Hub of the CTtransit system, as well as is directly adjacent to the center of Yale. **Figure 2.14** shows the extent of the CTtransit bus system in downtown New Haven, with bus frequencies running generally around every half hour or better during the day depending on the specific bus route. According to the *Move New* 

### Figure 2.13 Bicycle Traffic Signal Wall Street at Church



Image Source: Engineering

*Haven* study, discussed further below, the average number of weekday boardings pre-pandemic on CTtransit in New Haven was around 34,300. Round-trip, and assuming some riders take more than a couple one-way trips by bus daily, this equates to some 15,000 people taking the bus on weekdays in New Haven, many of which flow to or through downtown.

Due to the one-way streets, as noted on Figure 2.14, buses on many of the CTtransit routes somewhat confusingly travel on one street into the downtown and on a different street out of the downtown. An example of this is the CTtransit Route 237, which travels along Elm Street and Temple Street inbound, and along Chapel Street and York Street outbound between Dixwell/Newhallville/Hamden and downtown.







Figure 2.14 Map of New Haven Public Bus System

Source: CTtransit

Despite the high bus ridership, not all bus stops are sheltered. Within the study area that is the focus of this one-way to two-way study, there are currently just over a dozen bus stops but about half of them contain only bus stop signs with no bus shelters to shield waiting bus riders from rain, or to provide shade. These include three unsheltered bus stops on Church Street, three on York Street, and one on George Street. The bus stop shelters that do exist within the study area downtown are mostly basic style bus shelters, such as the left-most picture in Figure 2.15. Aesthetic bus shelters exist at some downtowns locations nearby the study area including on Chapel Street and Temple Street by the Green, and on Broadway (middle and right-most pictures in Figure 2.15).



### Figure 2.15 Bus Shelters Downtown



Source; Google Maps

### 2.2 Crash Data

A detailed crash analysis was conducted to identify potential vehicle crash trends and/or roadway deficiencies in the study area. The most current vehicle crash data for the traffic study area intersections for the latest two years were obtained from CTDOT via the Connecticut Crash Data Repository (CTCDR) for the two-year period of 2021 to 2022. Readers should note that the CTCDR database may not fully account for all crashes reported to the Department of Public Safety (DPS) or CTDOT.

The data was summarized by level of severity and crash type. It should be noted that the totals reflect the number of crashes, not the total number of people involved in each crash. A summary of this crash history is presented in **Table 2.2** and **Table 2.3**, and a heatmap of this crash data is shown on **Figure 2.16**.

### 2.2.1 Overall Crash Severities

In total, 438 crashes were reported in the study area during the two-year review period. Of these reported crashes, 386 (88%) occurred at intersections, while the remaining 52 (12%) occurred at midblock locations. Of the 438 crashes, 20% resulted in injuries, and the remaining 80% consisted of property damage only. There were no fatal crashes reported directly within the study area.

### 2.2.2 Overall Predominant Crash Types

The predominant crash types at the intersections were identified as "Sideswipe" (40%), "Rearend" (30%), and "Angle" crashes (22%). At the midblock locations, the predominant crash types were "Sideswipe" (52%) and "Rear-end" crashes (33%). Most of the crashes occurred during lighted conditions, and during dry weather (no rain, snow, or ice). In urban areas, sideswipes crashes commonly involve vehicles changing lanes or attempting to enter a travel lane from an adjacent parking lane and colliding with a traveling vehicle. Rear-end crashes typically occur due to driver inattentiveness and/or tailgating. Rear-ends may also indicate that a motorist did not see the signal heads, were not expecting intersection traffic control, or was speeding. Angle type crashes may indicate motorists running a red light and colliding with traffic from another approach.

### 2.2.3 Serious Injury Crashes

A serious or incapacitating injury was reported in five crashes at the study intersections, and in one crash on midblock segment. Out of these five incidents at intersection locations, three involved motorists colliding with pedestrians who were attempting to cross the street at





intersections when the crashes occurred. The remaining two serious injury intersection crashes were vehicle-on-vehicle collisions, with one involving a motorcycle. There is a possibility that this crash might have occurred due to running a red light. All five of these crashes occurred during clear and dry weather conditions. The one serious injury crash that occurred at a midblock crash happened when a parked motorist attempted to enter the travel lane and struck the rear of a vehicle passing by during dry nighttime but lighted conditions.

|                                     | Cras                 | h Sev  | erity | Type Of Collision |       |                            |                                |          |                                                 |               |       |                |               |  |
|-------------------------------------|----------------------|--------|-------|-------------------|-------|----------------------------|--------------------------------|----------|-------------------------------------------------|---------------|-------|----------------|---------------|--|
| Location                            | Property Damage Only | Injury | Total | Rear End          | Angle | Sideswipe (Same Direction) | Sideswipe (Opposite Direction) | Head -On | Hit Roadside Fixed Object/<br>Object In Roadway | Other/Unknown | Total | Hit Pedestrian | Hit Bicyclist |  |
| Intersections                       |                      |        |       |                   |       |                            |                                |          |                                                 |               |       |                |               |  |
| York Street at Grove Street         | 6                    | 1      | 7     | 3                 | 1     | 2                          | 0                              | 1        | 0                                               | 0             | 7     | 0              | 0             |  |
| York Street at Elm Street/ Broadway | 45                   | 6      | 51    | 11                | 7     | 27                         | 1                              | 0        | 4                                               | 1             | 51    | 0              | 1             |  |
| York Street at Chapel Street        | 14                   | 3      | 17    | 5                 | 3     | 8                          | 0                              | 0        | 1                                               | 0             | 17    | 0              | 0             |  |
| York Street at Crown Street         | 6                    | 1      | 7     | 0                 | 5     | 2                          | 0                              | 0        | 0                                               | 0             | 7     | 0              | 0             |  |
| York Street at George Street        | 9                    | 3      | 12    | 5                 | 3     | 4                          | 0                              | 0        | 0                                               | 0             | 12    | 0              | 0             |  |
| York Street at MLK Jr Boulevard     | 17                   | 8      | 25    | 12                | 1     | 8                          | 1                              | 0        | 1                                               | 2             | 25    | 0              | 0             |  |
| Church Street at Grove Street       | 17                   | 5      | 22    | 7                 | 6     | 5                          | 0                              | 1        | 3                                               | 0             | 22    | 2              | 0             |  |
| Church Street at Wall Street        | 2                    | 0      | 2     | 0                 | 2     | 0                          | 0                              | 0        | 0                                               | 0             | 2     | 0              | 0             |  |
| Church Street at Elm Street         | 12                   | 20     | 32    | 6                 | 15    | 10                         | 0                              | 0        | 0                                               | 1             | 32    | 0              | 0             |  |
| Church Street at Chapel Street      | 24                   | 6      | 30    | 12                | 7     | 8                          | 1                              | 0        | 1                                               | 1             | 30    | 1              | 1             |  |
| Church Street at Crown Street       | 28                   | 4      | 32    | 6                 | 7     | 17                         | 0                              | 0        | 2                                               | 0             | 32    | 1              | 0             |  |
| Church Street at George Street      | 29                   | 2      | 31    | 8                 | 2     | 21                         | 0                              | 0        | 0                                               | 0             | 31    | 0              | 0             |  |
| George Street at High Street        | 9                    | 1      | 10    | 1                 | 7     | 2                          | 0                              | 0        | 0                                               | 0             | 10    | 0              | 0             |  |
| George Street at College Street     | 15                   | 4      | 19    | 8                 | 2     | 6                          | 0                              | 0        | 3                                               | 0             | 19    | 1              | 1             |  |
| George Street at Temple Street      | 12                   | 1      | 13    | 1                 | 3     | 7                          | 0                              | 0        | 2                                               | 0             | 13    | 1              | 0             |  |
| Chapel Street at Park Street        | 13                   | 4      | 17    | 5                 | 5     | 6                          | 0                              | 0        | 0                                               | 1             | 17    | 0              | 1             |  |
| Chapel Street at High Street        | 16                   | 2      | 18    | 8                 | 1     | 6                          | 0                              | 0        | 3                                               | 0             | 18    | 1              | 0             |  |
| Chapel Street at College Street     | 35                   | 6      | 41    | 16                | 7     | 15                         | 0                              | 0        | 2                                               | 1             | 41    | 1              | 1             |  |
| Intersection Total                  | 309                  | 77     | 386   | 114               | 84    | 154                        | 3                              | 2        | 22                                              | 7             | 386   | 8              | 5             |  |

### Table 2.2 Crash Data Summary (2021 to 2022) - Intersections





|                                                 | Cra                  | sh Se  | verity |          |       |                            | Ту                             | pe O     | f Collisi                                       | on            |       |                |               |
|-------------------------------------------------|----------------------|--------|--------|----------|-------|----------------------------|--------------------------------|----------|-------------------------------------------------|---------------|-------|----------------|---------------|
| Location                                        | Property Damage Only | Injury | Total  | Rear End | Angle | Sideswipe (Same Direction) | Sideswipe (Opposite Direction) | Head -On | Hit Roadside Fixed Object/<br>Object In Roadway | Other/Unknown | Total | Hit Pedestrian | Hit Bicyclist |
| Midblock Segments                               |                      |        |        |          |       |                            |                                |          |                                                 |               |       |                |               |
| York Street, Grove Street to Elm Street         | 3                    | 1      | 4      | 2        | 0     | 1                          | 0                              | 0        | 1                                               | 1             | 4     | 0              | 0             |
| York Street, Elm Street to Chapel Street        | 8                    | 3      | 11     | 3        | 1     | 6                          | 0                              | 0        | 0                                               | 1             | 11    | 1              | 0             |
| York Street, Chapel Street to Crown Street      | 3                    | 0      | 3      | 1        | 0     | 2                          | 0                              | 0        | 0                                               | 0             | 3     | 0              | 0             |
| York Street, Crown Street to George Street      | 0                    | 1      | 1      | 0        | 0     | 0                          | 0                              | 0        | 0                                               | 1             | 1     | 1              | 0             |
| York Street, George Street to MLK<br>Boulevard  | 0                    | 0      | 0      | 0        | 0     | 0                          | 0                              | 0        | 0                                               | 0             | 0     | 0              | 0             |
| Church Street, Grove Street to Wall Street      | 1                    | 0      | 1      | 0        | 0     | 1                          | 0                              | 0        | 0                                               | 0             | 1     | 0              | 0             |
| Church Street, Wall Street to Elm Street        | 1                    | 0      | 1      | 0        | 0     | 1                          | 0                              | 0        | 0                                               | 0             | 1     | 0              | 0             |
| Church Street, Elm Street to Chapel Street      | 7                    | 2      | 9      | 5        | 0     | 4                          | 0                              | 0        | 0                                               | 0             | 9     | 0              | 0             |
| Church Street, Chapel to Crown Street           | 4                    | 1      | 5      | 2        | 1     | 2                          | 0                              | 0        | 0                                               | 0             | 5     | 0              | 0             |
| Church Street, Crown to George Street           | 1                    | 1      | 2      | 0        | 0     | 1                          | 0                              | 0        | 0                                               | 1             | 2     | 1              | 0             |
| George Street, York Street to High Street       | 0                    | 0      | 0      | 0        | 0     | 0                          | 0                              | 0        | 0                                               | 0             | 0     | 0              | 0             |
| George Street, High Street to College<br>Street | 5                    | 1      | 6      | 2        | 2     | 2                          | 0                              | 0        | 0                                               | 0             | 6     | 0              | 0             |
| George Street, College to Temple Street         | 0                    | 0      | 0      | 0        | 0     | 0                          | 0                              | 0        | 0                                               | 0             | 0     | 0              | 0             |
| George Street, Temple to Church Street          | 3                    | 0      | 3      | 0        | 0     | 3                          | 0                              | 0        | 0                                               | 0             | 3     | 0              | 0             |
| Chapel Street, Park Street to York Street       | 4                    | 0      | 4      | 2        | 0     | 2                          | 0                              | 0        | 2                                               | 0             | 4     | 0              | 0             |
| Chapel Street, York Street to High Street       | 0                    | 0      | 0      | 0        | 0     | 0                          | 0                              | 0        | 0                                               | 0             | 0     | 0              | 0             |
| Chapel Street, High Street to College<br>Street | 2                    | 0      | 2      | 0        | 0     | 2                          | 0                              | 0        | 0                                               | 0             | 2     | 0              | 0             |
| Midblock Segments Total                         | 42                   | 10     | 52     | 17       | 4     | 27                         | 0                              | 0        | 3                                               | 4             | 52    | 3              | 0             |

### Table 2.3 Crash Data Summary (2021 – 2022) – Midblock Locations

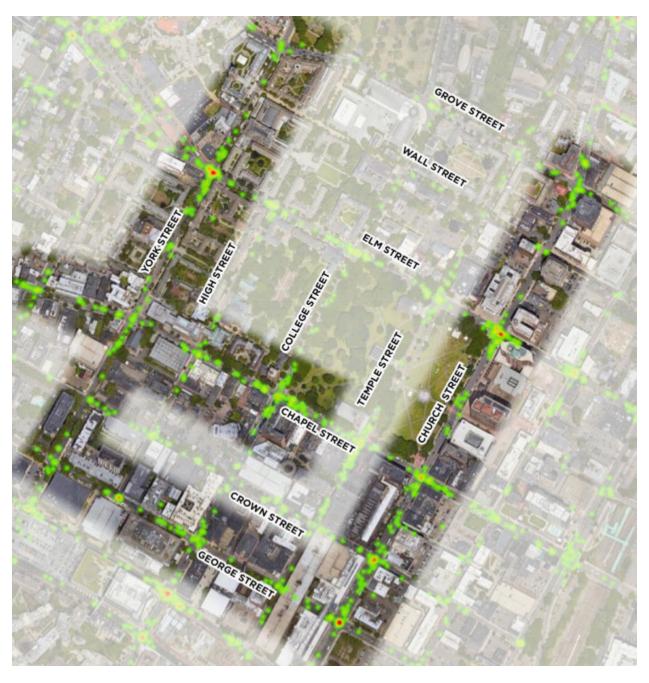
### 2.2.4 Crashes Involving Non-Motorists

There were 13 crashes involving non-motorized persons that occurred at intersections. As mentioned above, three of these crashes were serious-injury crashes that involved vehicles colliding with pedestrians who were attempting to cross the street at intersections. Five were crashes that reportedly resulted in less-serious injuries, and it is unknown if crosswalk signals were being observed at the time of these crashes. There were five crashes involving cyclists traveling on the street at intersection locations. Out of these, two cyclist collisions occurred with motorists traveling in the same direction (referred to as sideswipes), one occurred with parked





vehicles, and two were angle crashes at signalized intersections, with a potential involvement of running a red light.


Furthermore, there were three vehicle-pedestrian collisions that occurred at midblock locations, all of which reportedly resulted in minor injuries. Among these incidents, two crashes involved pedestrians attempting to cross the road, with one collision occurring at a marked crosswalk. The remaining crash occurred when a vehicle collided with a pedestrian pushing a cart within the vehicular travel lane. One of these crashes one occurred during snowy conditions, and one happened during rainy weather.

### 2.2.5 Nearby Fatal Crashes Involving Non-Motorists

Finally, it is also sadly noted that three traffic crashes involving non-motorists occurred downtown nearby but just outside of the study area in 2021 that resulted in fatalities. These resulted in a bicyclist's fatality at the intersection of Grove Street and College Street (hit and run), pedestrian's fatality at the intersection of Chapel Street and Temple Street (hit and run), and a pedestrian's fatality on Chapel Street east of Church Street.







### Figure 2.16 Crash Heatmap (2021 to 2022)

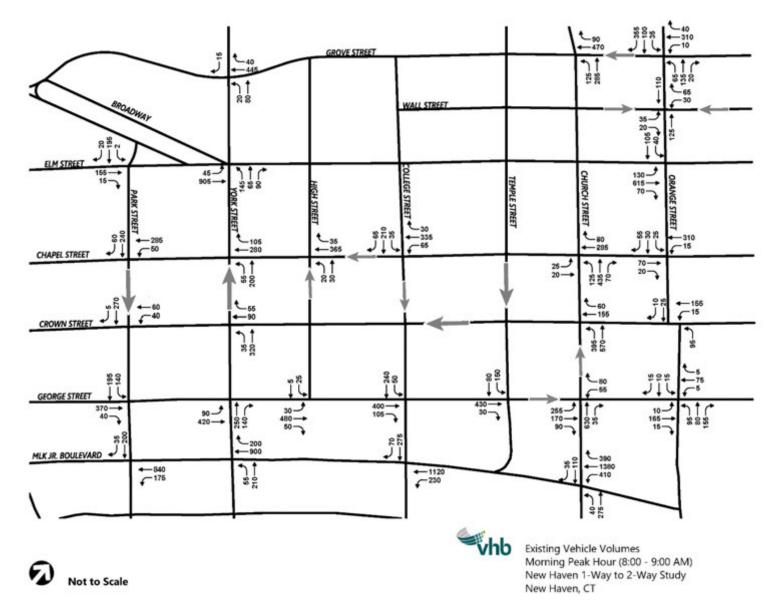




### 2.3 Existing Traffic Volume, Speed, and Travel Demand Data

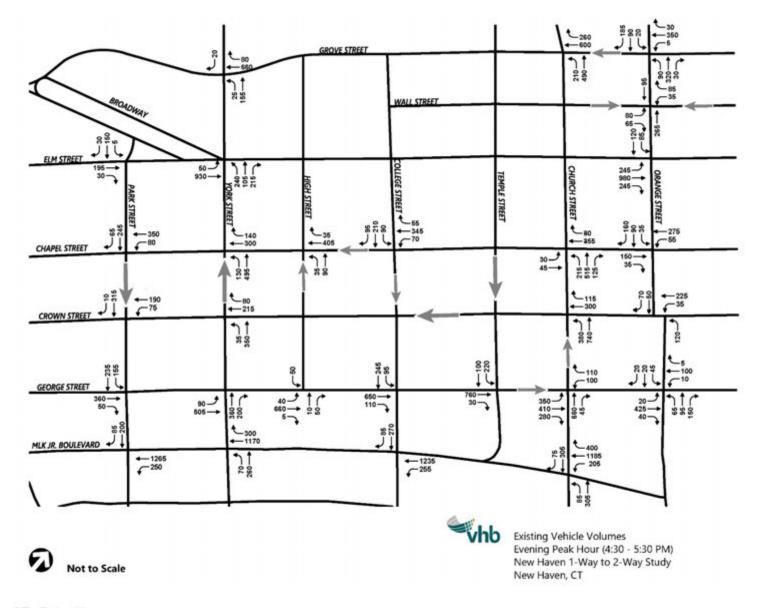
This section includes a summary of traffic counts that were collected for this study, as well as a review of other travel demands.

### 2.3.1 Peak Hour Intersection Turning Movement Traffic Counts


Turning movement traffic counts were conducted at 30 intersections within and adjacent to the project study area to quantify numbers of vehicles and pedestrians. The traffic counts are also used to evaluate existing traffic flow operating conditions (described further below). The traffic counts were collected on a typical weekday in early December 2022, during the morning and afternoon periods of 7:00 a.m. to 9:00 a.m. and 3:00 p.m. to 6:00 pm, respectively. The peakhour vehicular traffic volumes were then extracted from the counts and are shown on **Figure 2.17** and **Figure 2.18**. The pedestrian crossing volumes from these counts are shown on **Figure 2.19** and **Figure 2.20**.



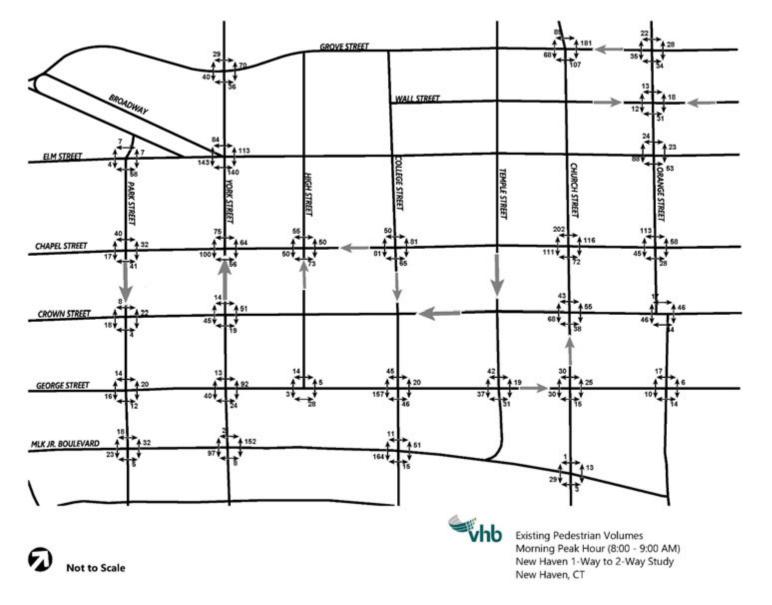





₩SLR

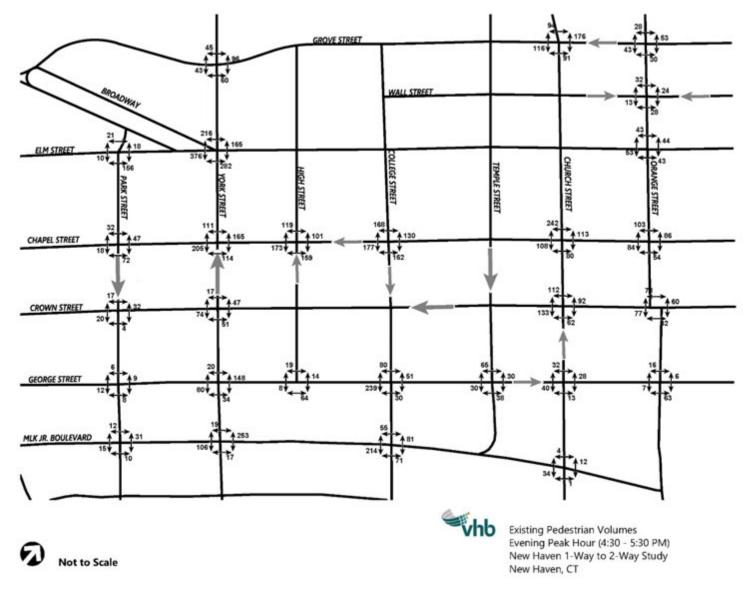





### Figure 2.18 Existing Vehichle Volumes – Evening Peak Hour






₩SLR













## 2.3.2 Non-Motorist Traffic

It should be noted that the pedestrian counts shown on **Figure 2.19** and **Figure 2.20** only include those pedestrians who crossed the street at intersections and do not include pedestrians who remained on the sidewalk walking the 90-degree corner from one street's sidewalk to another street's sidewalk. The City of New Haven, in partnership with SLR, has for the better part of the past 10 to 15 years conducted an annual <u>Point-In-Time Transportation</u> <u>Survey</u> of non-motorists that does include counts of all pedestrians at intersections, which thus provides a more comprehensive understanding of pedestrian activity at certain locations. The last Point-In-Time that took place in full, and was not done during the pandemic, occurred in October 2019. At the intersection of Church Street at Chapel Street, for example, around 500 pedestrians crossed the street at this intersection during the morning peak hour according to the early December 2022 intersection counts. According to the last Point-In-Time transportation survey another approximately 218 passed immediately by this intersection remaining on the sidewalk (720 total pedestrians). By comparison, 1,040 motor vehicles passed through this intersection during the morning the sidewalk (720 total pedestrians). By comparison, 1,040 motor vehicles passed through this intersection during the morning t

Bicyclists, which were enumerated generally as either vehicle traffic and pedestrian traffic in the early December 2022 intersection traffic counts, are individually counted as a specific part of the Point-In-Time Transportation Survey along with all pedestrian traffic. The 2019 Point-In-Time Transportation Survey found bike traffic at sample intersections downtown to be upwards of almost 100 bicyclists during the morning peak hour. In terms of transit ridership, according to the *Move New Haven* study, thousands of bus riders travel downtown during peak hours.

## 2.3.3 Travel Demand Mode Comparison

There are seven intersections that are included in both this two-way study and the Point-In-Time Transportation Survey. **Table 2.4** shows a comparison of the motor vehicle, pedestrian, and bicyclist weekday morning peak hour traffic quantities at these intersections. As can be seen, automobile traffic comprises around 65 percent of travel demand at this sample of intersections, while pedestrian traffic comprises 31.5 percent and bicyclist traffic comprises 3.5 percent. Bus riders are mixed within these percentages.

| Location                               | Pedestrian Volume | Bicycle Volume | Vehicle Traffic<br>Volume |  |
|----------------------------------------|-------------------|----------------|---------------------------|--|
| Chapel Street at Church Street         | 719               | 45             | 1,040                     |  |
| Chapel Street at College Street        | 411               | 93             | 740                       |  |
| Chapel Street at York Street           | 482               | 26             | 640                       |  |
| York Street at Elm Street and Broadway | 488               | 69             | 1,250                     |  |
| York Street at M.L.K. Jr. Boulevard    | 355               | 10             | 1,365                     |  |
| George Street at High Street           | 214               | 15             | 590                       |  |
| George Street at College Street        | 402               | 65             | 795                       |  |
| Total Percentages                      | 31.5%             | 3.5%           | 65%                       |  |

## Table 2.4Modal Traffic Count Comparison at Select IntersectionsWeekday Morning Peak Hour





Review was also made of the latest available <u>Census</u> commuting data of residents who live in the census tracts that contain the study-area streets. This census data finds that only around 25 percent of downtown residents commute by automobile, while 75 percent typically commute by either walking, bicycling, taking transit, or working from home (most walk to work). Census commuting data on the mode-choices of people who travel to work downtown, coming from inside or outside of New Haven, is not readily available. Yet, it is clear that downtown New Haven is truly a multimodal place.

## 2.3.4 Street Segment All-Day Traffic, Historical Traffic Levels, and Speed Data

Automatic traffic recorder (ATR) counts were also conducted at three street-segment locations in the study area in late November to early December 2022, to get samples of all-day traffic volume and vehicle travel speed data on Church Street south of Wall Street, George Street west of Temple Street, and York Street south of Elm Street. CTDOT additionally maintains ATR traffic monitoring stations at locations downtown, including on Church Street north of Chapel Street and south of Crown Street, George Street east of Temple Street, and York Street south of Chapel Street. The CTDOT ATR data, however, is not as recent as the late November to early December 2022 ATR data that was compiled for this study and hasn't been updated since the pandemic.

Review of the weekday average daily traffic (ADT) volumes from late November to early December 2022 finds that, at these specific locations, around 5,150 vehicles traveled on Church Street south of Wall Street over the course of a day, 5,500 did so on George Street west of Temple Street, and 6,170 did so on York Street south of Elm Street.

It is worth noting that, when comparing the 2022 ADT volume to the nearest historical CTDOT traffic monitoring ADT, daily traffic volumes do not appear to have increased in much of downtown over the past 10 to 15 years. For example, the ADT (from CTDOT) on York Street south of Chapel Street was 6,600 vehicles in 2009 (compared to 6,170 vehicles a block to the north in late 2022). Comparing historical ADT data from only the CTDOT dataset finds the same. Per the CTDOT traffic monitoring data, there was less daily traffic on Church Street north of Chapel Street, for example, in 2018 (8,400 vehicles) than there was in 2006 (8,900 vehicles). This indicates that automobile traffic does not always increase in perpetuity.

The speed data that was collected from the ATR counts in late November to early December 2022 found that that average speeds at the three locations ranged from 19 to 23 mph and that 85<sup>th</sup> percentile speeds ranged from 24 to 28 miles per hour (mph). However, hundreds of vehicles clocked-in going dangerously over 35 mph, with a handful that went over 45 mph on Church Street and George Street. None went over 45 mph on York Street, perhaps because of its traffic-calming raised crosswalks.

## 2.4 Traffic Flow Analysis

Based on the existing traffic count data discussed above, intersection capacity analyses were conducted to evaluate traffic flow operations at the study intersections during the weekday morning and afternoon peak-hour traffic periods. The following section summarizes the methods of traffic capacity analyses that are typically used and summarizes the existing conditions traffic flow findings.

## 2.4.1 Traffic Analysis Measures

Intersection capacity analyses were conducted by means of *Synchro* software (Version 11), which is the industry standard software that uses the methodologies of the *Highway Capacity* 





*Manual*. Capacity analyses results are reported using a variety of performance measures, including "Level of Service" (LOS) and vehicle queuing at intersections.

The LOS designation is based on the average control delay experienced by a motorist traveling through the intersection. Similar to a report card, LOS designations are letter-grade based, ranging from A to F, with LOS A representing the little to no vehicle delays and LOS F representing the long delays and congestion. LOS D or better conditions are widely considered to be acceptable. In downtowns and urban areas, LOS E during peak hours is deemed acceptable and can indicate an efficient trade-off between traffic flow and the amount of land devoted to the movement of motor vehicles. Moreover, in downtown areas, LOS A and LOS B during peak hours can reflect a sense of emptiness and of too much pavement given over to automobiles. A more detailed explanation of LOS can be found in the Appendix. The full detailed capacity analysis intersection worksheets and summary tables can also be found in the Appendix.

## 2.4.2 Existing Traffic Flow Findings

The existing condition overall intersection LOS findings are summarized in **Table 2.5** and shown on **Figure 2.21** through **Figure 2.22**.



|                                              | Level Of Service<br>Existing Conditions |                              |  |  |  |
|----------------------------------------------|-----------------------------------------|------------------------------|--|--|--|
| Location                                     |                                         |                              |  |  |  |
|                                              | Weekday Morning<br>Peak Hour            | Weekday Evening<br>Peak Hour |  |  |  |
| York Street at Grove Street/Tower Parkway    | В                                       | С                            |  |  |  |
| York Street at Elm Street/Broadway           | С                                       | С                            |  |  |  |
| York Street at Chapel Street                 | В                                       | С                            |  |  |  |
| York Street at Crown Street                  | Α                                       | В                            |  |  |  |
| York Street at George Street                 | С                                       | D                            |  |  |  |
| York Street at M.L.K. Jr. Boulevard          | Α                                       | В                            |  |  |  |
| Church Street at Grove Street/Whitney Avenue | С                                       | С                            |  |  |  |
| Church Street at Chapel Street               | D                                       | С                            |  |  |  |
| Church Street at Crown Street                | В                                       | В                            |  |  |  |
| Church Street at George Street               | С                                       | D                            |  |  |  |
| George Street at High Street                 | В                                       | В                            |  |  |  |
| George Street at College Street              | С                                       | В                            |  |  |  |
| George Street at Temple Street               | D                                       | С                            |  |  |  |
| Chapel Street at Park Street                 | Α                                       | В                            |  |  |  |
| Chapel Street at High Street                 | Α                                       | В                            |  |  |  |
| Chapel Street at College Street              | С                                       | D                            |  |  |  |

#### Table 2.5 Existing Traffic Conditions Level of Service Summary

As shown above, 11 of the 16 study intersections currently operate at overall LOS C or better, while five operate at an overall LOS D during at least one peak-hour period:

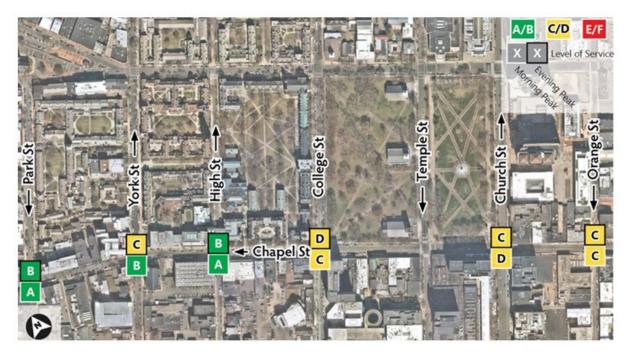
- **Church Street at Chapel Street**: During the morning peak hour, this intersection experiences overall LOS D, with the westbound approach experiencing the longest delays. The longest vehicle queuing occurs at the westbound and northbound approaches, which both experience average queues of around 4 to 5 cars.
- **George Street at Temple Street:** This intersection operates at LOS D during the morning peak hour. The eastbound approach encounters the most significant delays and vehicle queuing, with an average queue length of approximately 5 cars.
- York Street at George Street: During the evening peak hour, this intersection functions at overall LOS D. The northbound approach encounters the highest delays and has an approximate queue length of 5 cars on average.





- Church Street at George Street: During the evening peak hour, this intersection • functions at LOS D. The eastbound through movement encounters the longest delays and queues, with queuing of around 7 to 8 cars on average during the evening peak hour.
- Chapel Street at College Street: This intersection operates at overall LOS D during the evening peak hour. The southbound approach experiences the longest delays and queues, with an average queue of approximately 9 cars.

As mentioned earlier, LOS D is acceptable and not uncommon in urban areas but does reflect some noticeable traffic delay conditions. Nonetheless, even peak hour LOS E would be considered acceptable given that this is an urban downtown. In fact, LOS that is high on the A to F scale (LOS A and LOS B) can reflect a sense of emptiness, while traffic conditions in the middle LOS C to LOS E range is often reflective of an economically successful and vibrant place. Importantly, with all the study intersections operating at overall peak-hour LOS D or better, mostly at LOS B or LOS C, this indicates that excess capacity exists on these downtown streets today should there be a desire to repurpose some vehicle lane capacity as part of the two-way conversion.








#### **Traffic Operations LOS Map – Church Street** Figure 2.21

Figure 2.22 **Traffic Operations LOS Map – Chapel Street** 









## Figure 2.23 Traffic Operations LOS Map – York Street

Figure 2.24 Traffic Operations LOS Map – George Street







## 2.5 Existing Conditions Public Input

This section includes a summary of public input gained as part of the first public meeting for this study that was held virtually on May 16, 2023. After an introduction of this project and a presentation of the existing conditions by the project team, members of the public shared opinions and questions. A summary of the meeting can be found in the Appendix. Comments and questions from the public that came up during the first public meeting are summarized below.

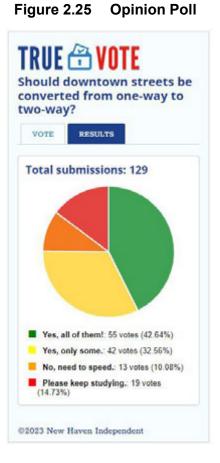
- Q1: Why were these specific corridors selected?
- Q2: Will the design for Church Street include protected bike infrastructure?
- Q3: The bus stop at the northeast corner of Church Street and Chapel Street should be included in this study, as it is a crew change point and location where lots of bus passengers transfer.
- Q4: Could a map be developed which shows all the one to two-way conversions, the State project in front of City Hall, and the "BRT" on Elm Street?
- Q5: What is the estimated cost for one-way to two-way conversions?
- Q6: One-way streets should be intuitively safer than two-way streets due to reduced conflicts, so wouldn't converting to two-way streets increase crashes? Will the project consider ADA compliance issues?
- Q7: Once a plan is created, how will it be funded? What is the estimated date of completion? When will BRT project have a public info meeting?
- Q8: Will there be consideration for removing traffic signals under this project?
- Q9: This project should consider all users, not just bicycles.
- Q10: There have been studies in the past, but nothing has changed. How will this time be different?
- Q11: What has been done to reach out to businesses?
- Q12: Can temporary quick fixes (painted bike lanes, etc.) take place on these streets while the study is taking place? If it takes years, do we risk losing the ability to have quick fixes in the interim?
- Q13: Will two-way conversions be completed all at once? Or in pieces? What will be the learning process for the public?
- Q14: Protected-bike lanes should be installed downtown.

Responses to several of these questions/comments have been incorporated into the earlier parts of this Existing Conditions Chapter. With regard to the study process and additional public meetings, it was noted that additional public meetings will take place as this study and the street redesign concepts advance.

With regard to capital implementation costs, it was noted by the project team that cost estimates will be developed later in the study process after concept design plans have been developed and refined. Specific funding mechanisms to implement the two-way conversion will also be determined later in the process after design plans are developed.

When the two-way conversion will be implemented is also unknown and will be contingent on a number of factors including funding availability. It will likely be possible to implement quick-build solutions that could become permanent, longer-term. In fact, not every improvement needs to






happen all at once. The extent to which permanent two-way conversion changes will be implemented in pieces, in large sections, or even all at once will be further evaluated during the full-design/construction phases, and again will be contingent on funding. Public outreach from the city to educate the traveling public about any two-way conversion and possible routing changes and road closures will also take place in the future, prior to actual implementation.

In terms of accessibility, it must be noted that improvements developed under this project will be ADA compliant. To the extent possible, improvement of any current non-compliant ADA facilities within the study area will also be identified for rectification. These streets are for all types of users, including those with disabilities.

With regard to the state's BRT project, as of the time of this writing that state project was in its very early stages and its public information meeting date has not yet been announced. At least some of the concept-design options developed as part of this two-way conversion study will provide accommodation for BRT.

Both the New Haven Register and the New Haven Independent published articles about the project after the initial public information meeting. The <u>New Haven</u> <u>Independent article</u> included a live poll that asked the question: "Should downtown streets be converted from oneway to two-way?" The results of this poll, shown in **Figure 2.25**, found that around 3 out of 4 people support the two-way conversion on at least some of downtown's streets.





## 3.0 Two-Way Traffic Analysis

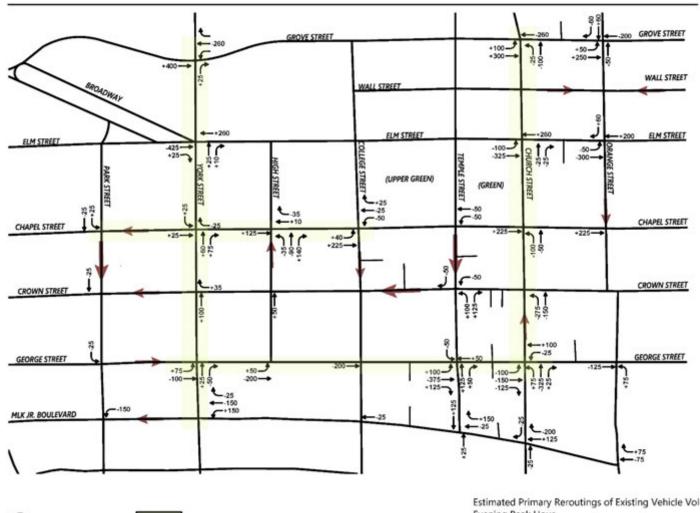
To analyze how the study-area streets that are currently one-way would function in terms of traffic flow in the future if they were changed to two-way streets, estimates were first made of the degree of peak-hour traffic volume rerouting that could be reasonably expected to occur. A change to two-way streets would unlock additional, and often more direct, driving routes. In general, each individual motorist starting from an origin and headed to a destination chooses a travel route that they (or their driving directions app) believe is the best for them during that time – usually one that minimizes their travel time when considering all the other motorists, colloquially known as 'traffic', who are also driving through a certain area during a given timeframe. If these streets were to change from one-way to two-way in New Haven, each and every motorist would then decide if any new driving route would be a better option than the route they currently, or otherwise, would take. Some motorists will use a new route to get to their destination and some will not. Ultimately, after an adjustment period of perhaps a few days or more, the general driving patterns to, from, through, or within, downtown New Haven would re-adjust to the new normal.

Next, the estimated two-way scenario traffic flow patterns/volumes were analyzed in the intersection capacity-analysis model (*Synchro* software) that was also modified to reflect how the street lane-striping configurations and signal infrastructure/operations (signal phasings, timings, coordination) would also change if these streets were made two-way. In a somewhat iterative process of fine-tuning the two-way traffic volume rerouting estimates and the potential two-way signal infrastructure modifications, including taking into account intersection capacity changes associated with their redesign, a reasonable picture of future two-way conditions came into focus. This corresponds in general with what is recently known as the Vision & Validate approach to transportation planning/traffic engineering, which aims to match a new vision of how city streets could look and function in a more equitable, sustainable, multimodal, and safer way for all roadway users, with the changes to travel patterns and infrastructure that would be anticipated in making the vision a reality. This is as opposed to the 'predict-and-provide' method that has historically been overfocused on accommodating automobile traffic growth and overbuilding automobile infrastructure above all else.

## 3.1 Two-Way Traffic Volumes

**Figure 3.1** and **Figure 3.2** respectively show the weekday morning and afternoon peak-hour traffic volume reroutings that are estimated to occur within the study area as part of the one-way to two-way conversion. The afternoon peak-hour traffic volume reroutings were estimated first given that the total traffic volumes are higher in the afternoon than the morning across the board. Those for the morning peak hour where then estimated secondarily in a similar proportional fashion.






#### Figure 3.1 Two-Way Conversion Traffic Volume Re-Routing Estimates – Morning Peak Hour





#### Figure 3.2 Two-Way Conversion Traffic Volume Re-Routing Estimates – Afternoon Peak Hour



Not to Scale

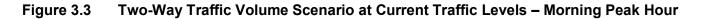
= STUDY AREA

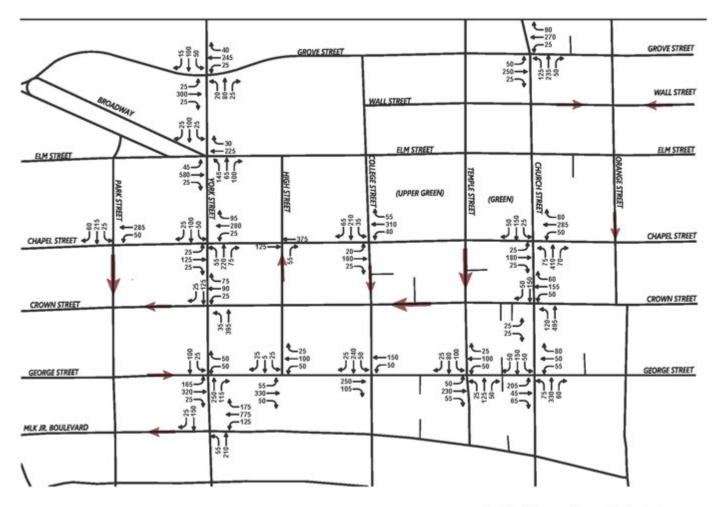
Estimated Primary Reroutings of Existing Vehicle Volumes Evening Peak Hour New Haven 1-way to 2-way Study New Haven, CT

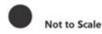




Change to two-way on the study area streets will prompt some motorists to seek an alternate parallel route. For instance, making Church Street two-way will necessitate changing some northbound lane(s) to instead allow southbound flow, which will nudge some of the current northbound traffic to instead use other streets to get to their destination. This will include the ability to use Temple Street northbound for some blocks in the future, as that street is to be converted in part to two-way as part of Downtown Crossing Phase 4, as well as the likelihood that some motorists will switch to use York Street and/or other streets to head northbound. Secondary, there will also be some rerouting of traffic based purely out of convenience; such as the ability in the future to drive southbound on Church Street once it becomes two-way even though the demand to go southbound will remain satisfied by multiple other southbound routes that will remain largely unchanged in close proximity.


Two-way conversions also make sense when done in pairs. Another example is that the future two-way George Street and two-way Chapel Street will swap some eastbound and westbound traffic, respectively. Some of the current eastbound George Street traffic will instead use Chapel Street to go eastbound once both are converted to two-way, and similarly some of the current westbound Chapel Street traffic may instead use George Street westbound in the future. Likewise, a two-way Elm Street and two-way Grove Street will swap some eastbound and westbound traffic, respectively.

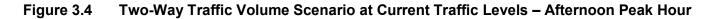

Note, that not all traffic is expected to reroute as a result of the conversion to two-way streets, as shown in Figure 3.1 and Figure 3.2. When comparing these two-way conversion traffic volume rerouting estimates to the existing traffic volumes shown in Chapter 2, depending on the block, only around one-third of the current northbound traffic on Church Street between George Street and Crown Street during the morning peak hour is estimated to reroute to other blocks as a result of the proposed conversion from one-way to two-way streets. While no one can exactly predict the future, reasonably sound estimates and assumptions were made for the future two-way traffic flow analysis.

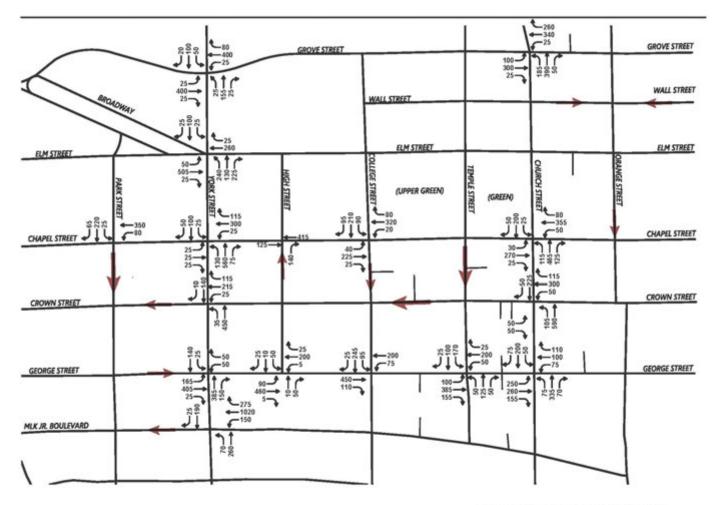

**Figure 3.3** and **Figure 3.4** show the resultant total two-way peak hour traffic flows that are estimated when applying the estimated two-way-induced traffic volume reroutings to the existing one-way traffic volumes as shown in from Figure 2.17 and Figure 2.18.










Two-Way Scenario at Current Traffic Levels Morning Peak Hour New Haven One-Way Streets Study New Haven, CT







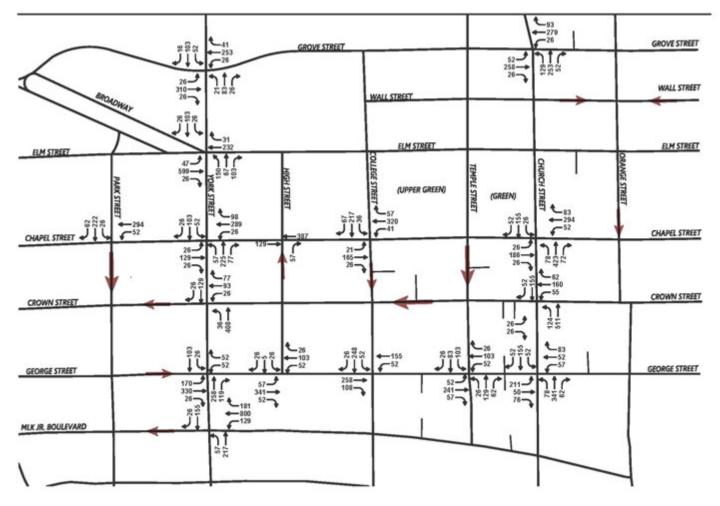


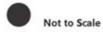


Two-Way Scenario at Current Traffic Levels Evening Peak Hour New Haven One-Way Streets Study New Haven, CT



## 3.2 **Projected Future 2030 Two-Way Volumes**

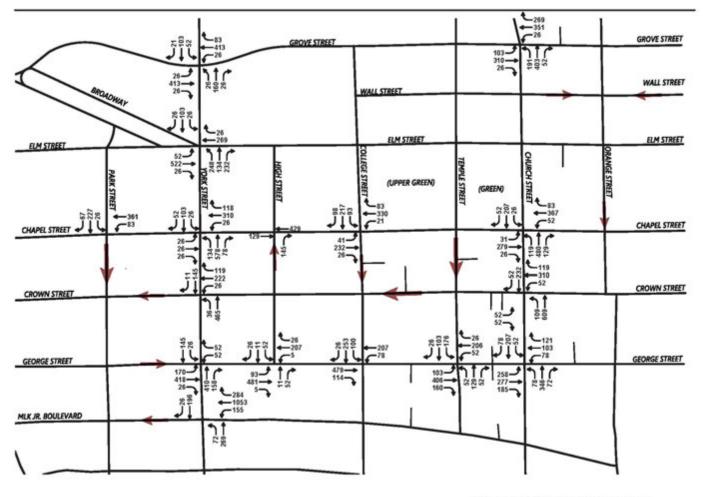

Lastly, in terms of estimating how the downtown traffic volumes may change with the conversion to two-way streets, the total two-way peak hour traffic flows were projected out to future year 2030. This was done based on correspondence with the City and with CTDOT by applying an ambient growth rate (of 0.4% per year) and adding estimated new traffic from two large developments in the Downtown Crossing to the two-way volumes (Figure 3.3 and Figure 3.4). **Figure 3.5** and **Figure 3.6** show the projected 2030 total two-way peak hour traffic flows downtown.


It is worth noting again that, as mentioned earlier study section 2.3.4, Average Daily Traffic (ADT) volumes did not increase in much of downtown over the past 10 to 15 years. Thus, the estimated future 2030 two-way traffic volumes and Vehicular LOS results, discussed below, may ultimately prove to be inflated should the next 10 to 15 years turn out to be similar.












Estimated 2030 Two-Way Traffic Volumes Morning Peak Hour New Haven One-Way Streets Study New Haven, CT



#### Figure 3.6 Two-Way Traffic Volume Scenario at Projected 2030 Traffic Levels – Afternoon Peak Hour



Not to Scale

Estimated 2030 Two-Way Traffic Volumes Evening Peak Hour New Haven One-Way Streets Study New Haven, CT



## 3.3 **Two-Way Traffic Flow/Intersection Operations Analysis**

Based on the estimated two-way traffic volumes, intersection capacity analyses were conducted to evaluate potential future traffic flow operations at the study intersections during the weekday morning and afternoon peak-hours. Changes to signal infrastructure that would be necessary for the two-way conversion, discussed further below in Section 4.1.8, were included in this analysis.

As in the Existing Conditions Chapter, the estimated future two-way intersection capacity analyses were again conducted by means of *Synchro* software (Version 11). Capacity analyses results are reported using a variety of performance measures, including LOS at intersections. LOS designations, ranging from LOS A to LOS F, are based on the average control delay experienced by a motorist traveling through an intersection, with LOS A representing little to no vehicle delays, and LOS F representing the long delays and congestion. LOS D or better conditions are widely considered to be acceptable. In downtowns and urban areas, even LOS E during peak hours is deemed acceptable and can indicate an efficient trade-off between traffic flow and the amount of land devoted to the movement of motor vehicles.

The two-way condition overall intersection LOS findings are summarized in **Table 3.1**. As shown, all of the study intersection can be expected to operate at overall LOS D or better in the future with the two-way conversion during the morning peak hour and overall LOS E or better in during the afternoon peak hour, with the majority of intersections anticipated to operate at Overall LOS B or LOS C during the morning peak hour and LOS D during the afternoon peak hour. As might be expected, should total vehicular traffic levels downtown not substantially increase by 2030 the handful number of intersections with the lowest-grade LOS will be less. With all the potential changes in traffic flow patterns and intersection configurations including to traffic signals that would come with two-way conversion, it should also be noted that while some intersections will see little change to overall LOS and could even see fewer motorist delays overall. Furthermore, conditions for non-motorists and motorists alike in terms of traffic safety will improve on the whole if the streets are redesigned for two-way as shown in the concept plans in this report.





|                                                 | Vehicle Level of Service          |                              |                                                                 |                                   |                              |                                                                 |  |
|-------------------------------------------------|-----------------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------------|------------------------------|-----------------------------------------------------------------|--|
| Location                                        | Weekday I                         | Weekday Morning Peak Hour    |                                                                 |                                   | fternoon                     | Peak Hour                                                       |  |
|                                                 |                                   |                              | o-Way<br>ditions                                                |                                   | Two-Way<br>Conditions        |                                                                 |  |
|                                                 | Existing<br>One-Way<br>Conditions | Current<br>Traffic<br>Levels | Estimated<br>Future<br>Growth<br>Year 2030<br>Traffic<br>Levels | Existing<br>One-Way<br>Conditions | Current<br>Traffic<br>Levels | Estimated<br>Future<br>Growth<br>Year 2030<br>Traffic<br>Levels |  |
| York Street at Grove Street/Tower<br>Parkway    | В                                 | В                            | В                                                               | С                                 | В                            | В                                                               |  |
| York Street at Elm Street/Broadway              | С                                 | D                            | D                                                               | С                                 | D                            | E                                                               |  |
| York Street at Chapel Street                    | В                                 | В                            | В                                                               | С                                 | D                            | D                                                               |  |
| York Street at Crown Street                     | A                                 | В                            | С                                                               | В                                 | D                            | D                                                               |  |
| York Street at George Street                    | С                                 | В                            | В                                                               | D                                 | В                            | В                                                               |  |
| York Street at M.L.K. Jr. Boulevard             | А                                 | D                            | D                                                               | В                                 | D                            | D                                                               |  |
| Church Street at Grove<br>Street/Whitney Avenue | С                                 | С                            | С                                                               | С                                 | D                            | D                                                               |  |
| Church Street at Chapel Street                  | D                                 | С                            | С                                                               | С                                 | D                            | D                                                               |  |
| Church Street at Crown Street                   | В                                 | С                            | С                                                               | В                                 | E                            | Е                                                               |  |
| Church Street at George Street                  | С                                 | D                            | D                                                               | D                                 | D                            | Е                                                               |  |
| George Street at High Street                    | В                                 | A                            | А                                                               | В                                 | В                            | С                                                               |  |
| George Street at College Street                 | С                                 | С                            | С                                                               | В                                 | D                            | D                                                               |  |
| George Street at Temple Street                  | D                                 | В                            | В                                                               | С                                 | С                            | D                                                               |  |
| Chapel Street at Park Street                    | A                                 | В                            | В                                                               | В                                 | D                            | D                                                               |  |
| Chapel Street at High Street                    | А                                 | В                            | В                                                               | В                                 | В                            | В                                                               |  |
| Chapel Street at College Street                 | С                                 | С                            | С                                                               | D                                 | D                            | D                                                               |  |

## Table 3.1 Two-Way Conversion Traffic-Flow Conditions Level of Service Summary



Lastly, it must also be noted that this two-way traffic analysis took a conservative approach in that it did not directly take into account that some Vehicle Miles Traveled (VMT) reductions may occur in the future, due to more people potentially deciding to take transit, walk, and/or bike more often instead of drive, or even changing their time of travel to other slightly off-peak times of day. Such changes would also result in some improvements to the Vehicular LOS projections summarized in the table above. Figure 3.7 illustrates just some of the ways that transportation demands can be changed as part of roadway and street reconfigurations to achieve a more sustainable future and still get people where they need to go.

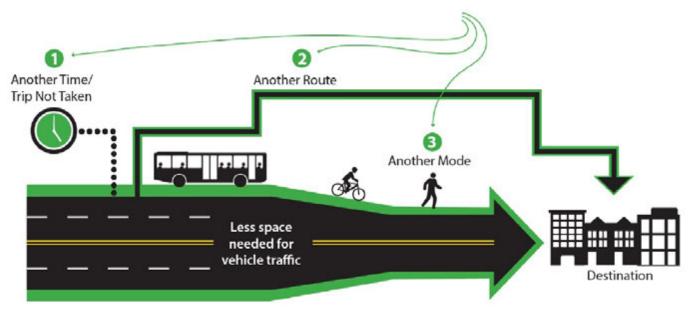



Figure 3.7Additional Ways That Traffic Can Change When Streets Change

*Source: Implementing Context Sensitive Design on Multimodal Thoroughfares* - A Practitioner's Handbook. Institute of Transportation Engineers, 2017





## 4.0 Concept Development

Based on the analysis of existing one-way conditions, analysis of estimated future two-way traffic flow conditions, public input received early in study process, and best-practices Complete Streets/safe-streets design principals, multiple concept-design plans were developed for the study corridors. Preliminary concepts were developed with the goal of vetting these concepts with the City, stakeholders and the public, and ultimately refining them into preferred concepts for each corridor.

## 4.1 Multimodal Safe Streets Two-Way Street Design Concepts

The alternate concept designs for the study-area streets can be seen in **Figure 4.1** through **Figure 4.12**. The following is a summary of the key design modifications, categorized generally by transportation mode, shown in each alternate concept-design plan for each study corridor

### 4.1.1 Church Street – Alternate 1

The following is proposed under this alternative:

- Bus/Transit Improvements
  - Addition of BRT-style concept-design with center-running bus-only lanes on Church Street south of Elm Street per CTDOT/City's *Move New Haven* BRT plan.
    - BRT station platforms would be right-side-boarding offset platforms on Church Street between George and Chapel Streets in this concept.
    - No BRT/bus-only lanes on Church Street north of Elm Street. BRT route would continue instead on Elm Street via Church Street (Elm Street BRT design not part of this project.)
    - Note that bus-only lanes are able to be used by emergency vehicles.
  - Some relocated and consolidated local-bus stops northbound on Church Street, particularly along the blocks that would overlap with BRT. Note that this concept envisions to ability of some local buses to be able to use BRT stations if desired by the city/state.
  - Conversion from one-way to two-way will allow the ability for southbound bus routing along Church Street, particularly for bus routes that currently route southbound on Temple Street 1 block over. Consolidating both northbound and southbound, or inbound and outbound, bus stops to a single street, instead of a pair of streets block(s) apart, can simplify transit routing and the rider experience. New southbound bus stops are shown on Church Street in Alternate 1. Note that some local buses could/should perhaps remain on Temple Street southbound through some or all of downtown given the abundance of existing bus stops on Temple Street at the Green and due to the lack of right-of-way (ROW) width of Church Street by the Green. Final determination on this to be made by City/State.
  - Addition of bus shelters to all bus stops.

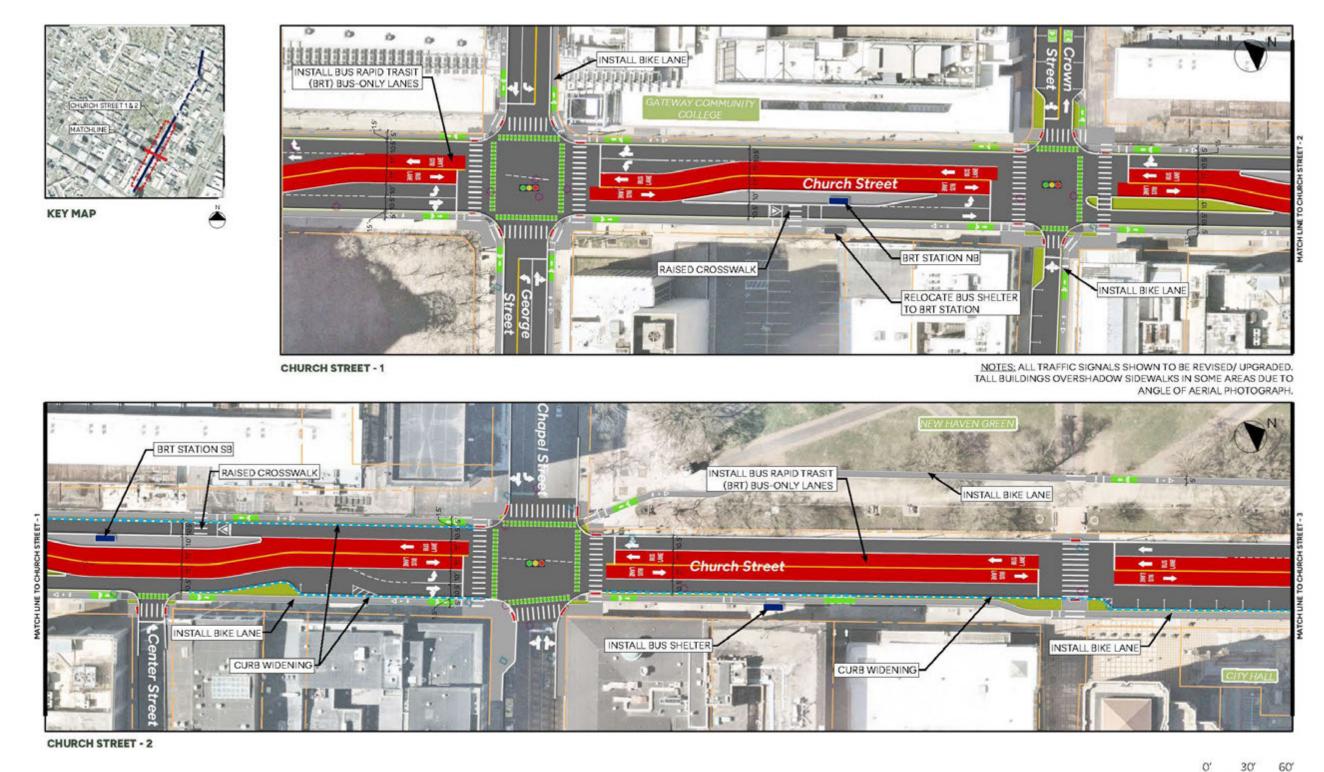




- BRT-style signal infrastructure including Transit Signal Priority (TSP), transit-only signal heads, and/or transit signal pre-emption.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sidewalk-level one-direction bicycle (and all-purpose personal wheeled mobility device) lanes would be added to the entire study-area stretch of Church Street, including Whiteny Avenue to the north, for each direction northbound and southbound along each side of the street, with the exception of southbound on Church Street between Elm and Chapel Streets. Due to lack of ROW width between Elm and Chapel Streets, southbound bicyclists along this section would be pointed to use the existing shared-use path(s) on the Green.
  - Special attention would be paid to bicycle lane conflicts at local-bus-stop by narrowing the bicycle lane into a yield-area for bicyclists to give way to, and provide sufficient room for, boarding/alighting bus-riders.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - Raised crosswalks would be added for access to/from BRT station platforms. A raised crosswalk could also be added across the east leg of Wall Street at Church Street.
  - Corner curb-extensions/bump-outs would be added at multiple locations along this corridor, which will reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - Depending on the final design of the BRT/bus-only lanes, pedestrian refuge median(s) could be added to Church Street at certain location(s).
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary (discussed further below). This would include the addition of Leading Pedestrian Intervals (LPI).
  - Much of the corridor would be reconfigured to remove the multiple allpurpose single-direction automobile through-lanes that exist today. This will reduce incidences of motorist weaving and speeding, reduce the potential for the multiple-threat collision, and make the downtown street look and feel less like a highway. Automobile lane widths would furthermore be narrowed as feasible.
- On-street Parking Accommodations:
  - Approximately a quarter of the current 130 on-street parking spaces would remain under this concept for Church Street between George and Grove Streets. This would include many of the on-street spaces directly next to City Hall. Note that some widening of Church Street in this area would be needed for this. On-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages. It should also be reminded that there are many orders-of-magnitude more parking spaces that are empty






within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.

- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersections. Where left turn lanes are proposed along Church Street, particularly at intersections that would also have bus-only lanes, those lefts would be allowed only as signal-controlled protected-left-turns for safety purposes.
  - The intersection of Church Street at Wall Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Elm Street, as mentioned above, is to be redesigned for BRT under separate state project.
  - Whitney Avenue north of Church/Grove assumed would remain northbound only but shown with road-diet to one lane to accommodate bicycle lanes.
  - Crown Street west of Church Street (between Church and Temple Streets) is recommended as part of this study to be converted to two-way to allow additional routing options to get to the Temple Street Parking Garage and the Gateway Community College Parking Garage. Crown Street east of Church Street would remain one-way westbound but with a reconfiguration to accommodate bicycle lane.
  - Grove Street it is understood will be converted to two-way under separate City and/or State project.

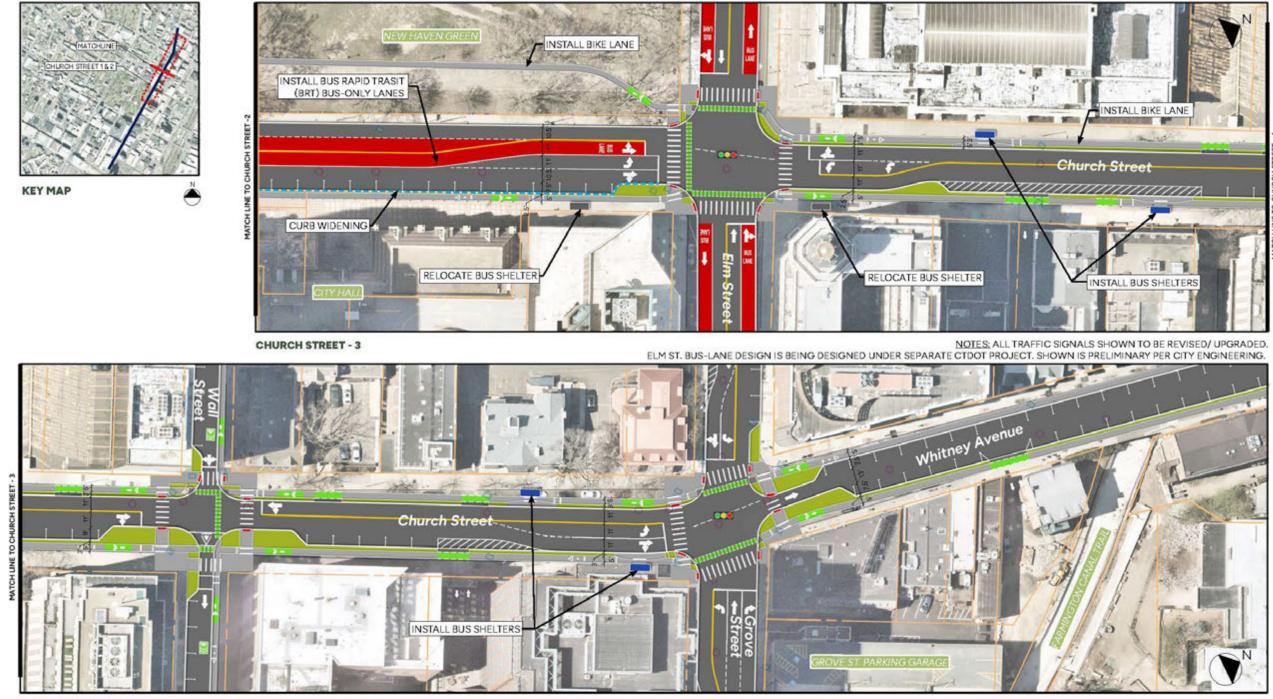




#### Figure 4.1 Two-Way Conversion Concept Design – Church Street – Aternate 1



**CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - CHURCH STREET** 


# ₩SLR



30' 60' 1/2" 1"



## Figure 4.2 Two-Way Conversion Concept Design – Church Street - Alternate 1



**CHURCH STREET - 4** 

## **CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - CHURCH STREET**







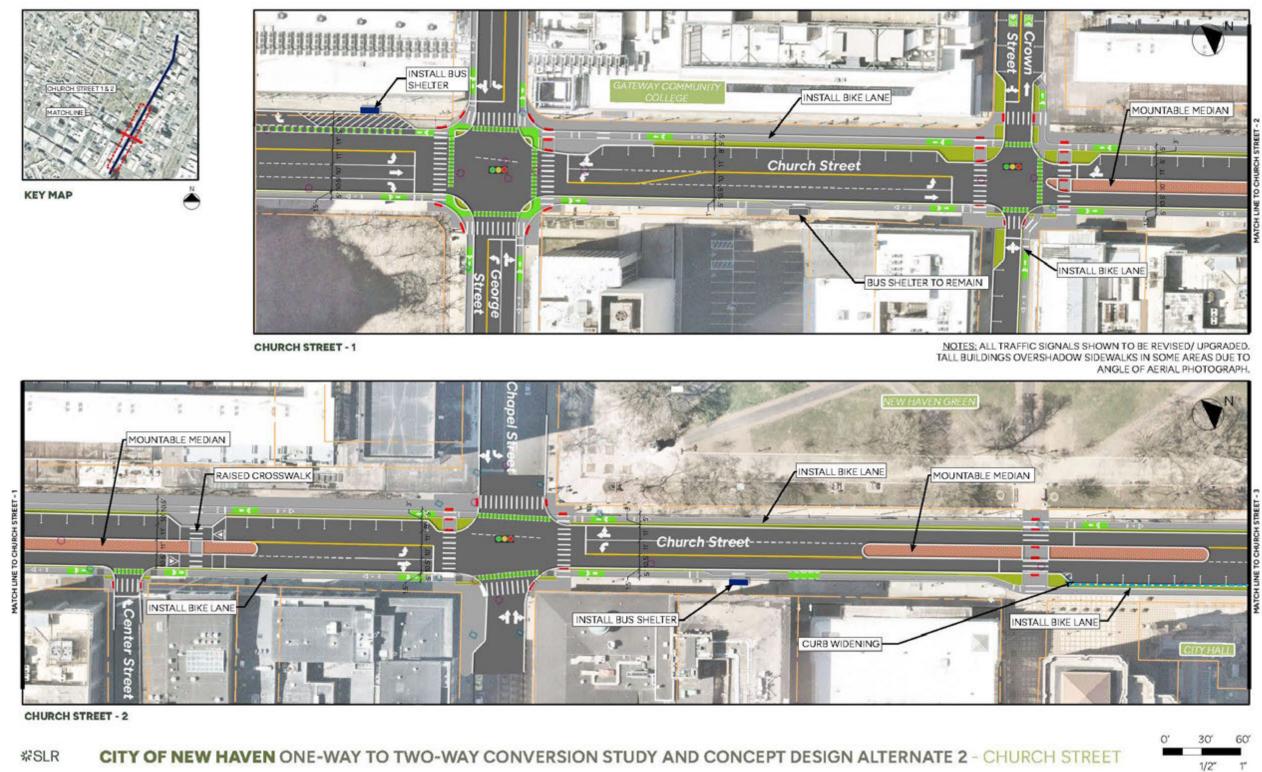
## 4.1.2 Church Street – Alternate 2

The following is proposed under this alternative:

- Bus/Transit Improvements:
  - Some relocated and consolidated bus stops northbound on Church Street.
  - Conversion from one-way to two-way will allow the ability for southbound bus routing along Church Street, particularly for bus routes that currently route southbound on Temple Street 1 block over. Consolidating both northbound and southbound, or inbound and outbound, bus stops to a single street, instead of a pair of streets block(s) apart, can simplify transit routing and the rider experience. New southbound bus stops are shown on Church Street in Alternate 2. Note that some local buses could/should perhaps remain on Temple Street southbound through some or all downtown given the abundance of existing bus stops on Temple Street at the Green and due to the lack of right-of-way (ROW) width of Church Street by the Green. Final determination on this to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle-lane Accommodations/Improvements:
  - Sidewalk-level one-direction protected bicycle lanes would be added to the entire study-area stretch of Church Street, including Whiteny Avenue to the north, for each direction northbound and southbound along each side of the street.
  - Special attention would be paid to bicycle lane conflicts at local-bus-stop by narrowing the bicycle lane as necessary into a yield-area for bicyclists to give way to, and importantly provide sufficient room for, boarding/alighting bus-riders.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - A raised crosswalk could be added across the east leg of Wall Street at Church Street.
  - Corner curb-extensions/bump-outs would be added at multiple locations along this corridor, which will reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - A pedestrian refuge median could be added to portions of Church Street, particularly adjacent to and/or south of the Green.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary (discussed further below). This would include the addition of Leading Pedestrian Intervals (LPI).
  - Much of the corridor would be reconfigured to remove the multiple allpurpose single-direction automobile through-lanes that exist today. This

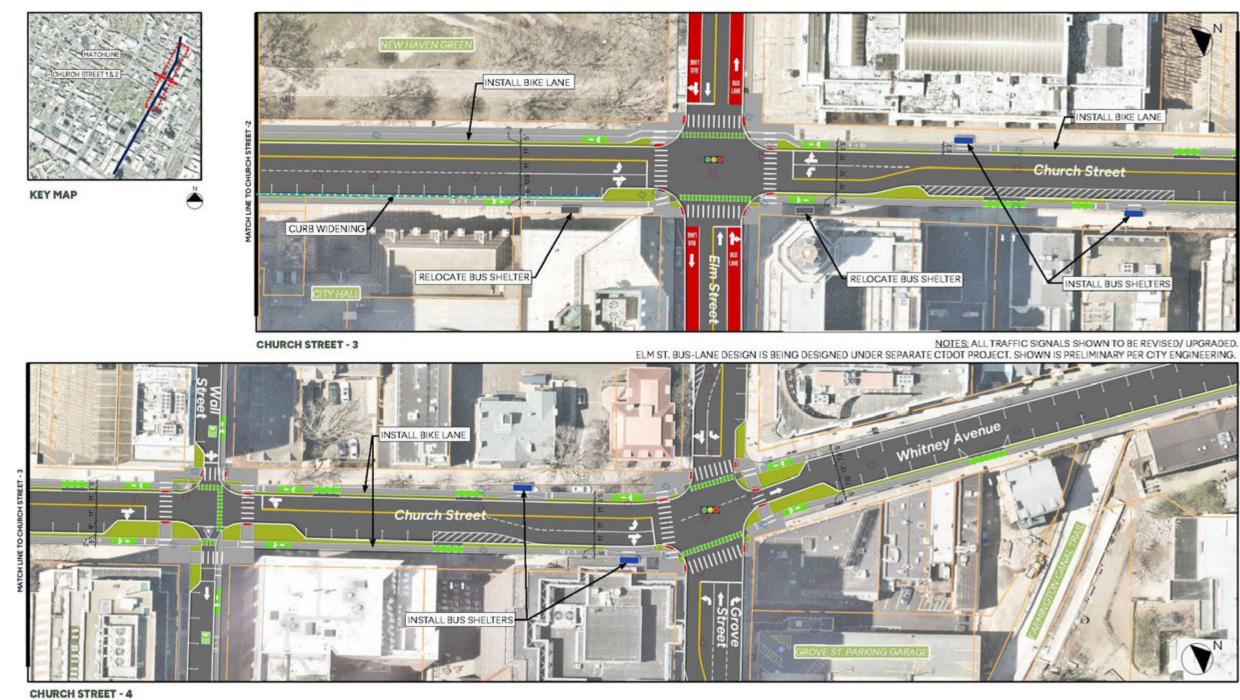




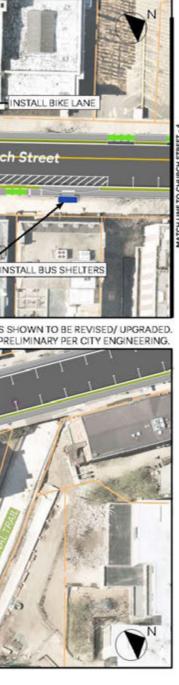

will reduce incidences of motorist weaving and speeding, reduce the potential for the multiple-threat collision, and make the downtown street look and feel less like a highway. Automobile lane widths would furthermore be narrowed as feasible.

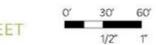
- On-street Parking Accommodations:
  - At least approximately half of the current 130 on-street parking spaces would remain under this alternate 2 concept for Church Street between George and Grove Streets. This would include many of the on-street spaces directly next to City Hall. Note that some widening of Church Street in this area would be needed for this. On-street loading and handicap accessible parking space locations within the remaining onstreet parking are to be determined during further design stages. It should be reminded that there are many orders-of-magnitude more parking spaces that are empty within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersections.
  - The intersection of Church Street at Wall Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Elm Street, as mentioned above, is likely to be redesigned for BRT under separate state project.
  - Whitney Avenue north of Church/Grove assumed would remain northbound only but shown with road-diet to one lane to accommodate bicycle lanes.
  - Crown Street west of Church Street (between Church and Temple Streets) is recommended as part of this study to be converted to two-way to allow additional routing options to get to the Temple Street Parking Garage and the Gateway Community College Parking Garage. Crown Street east of Church Street would remain one-way westbound but with a reconfiguration to accommodate a bicycle lane.
  - Grove Street it is understood will be converted to two-way under separate City and/or State project.






#### Two-Way Conversion Concept Design – Church Street - Alternate 2 Figure 4.3




#### Figure 4.4 Two-Way Conversion Concept Design – Church Street - Alternate 2



CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - CHURCH STREET ☆SLR





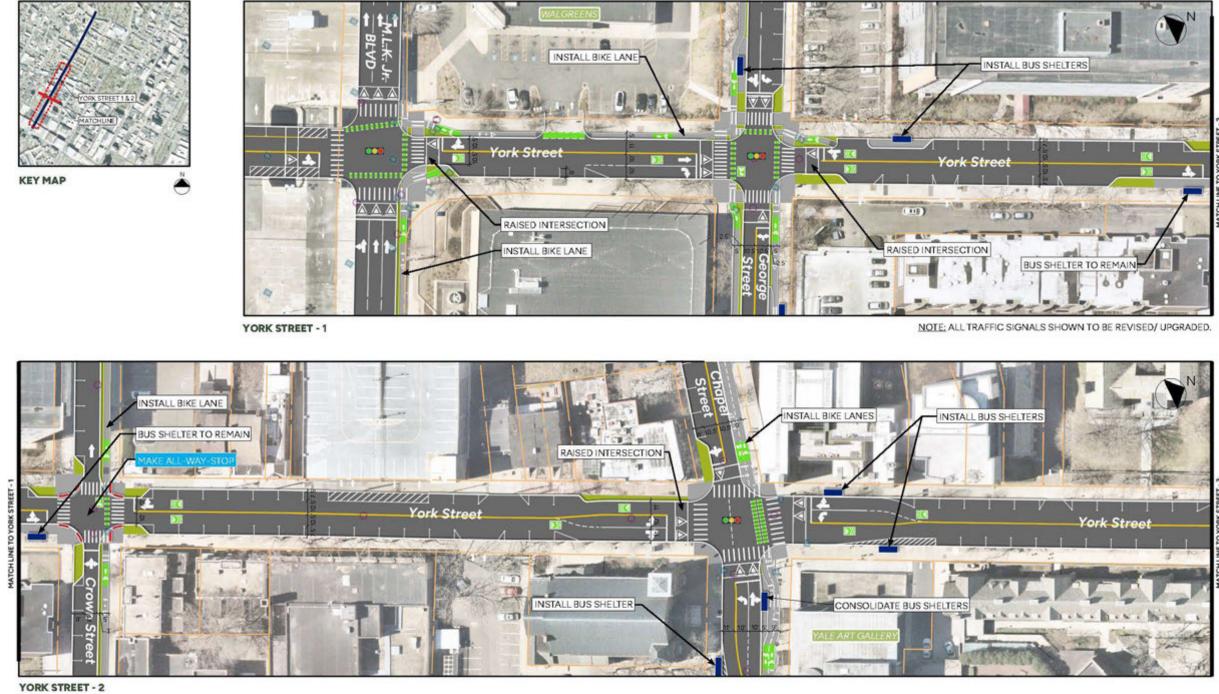


## 4.1.3 York Street – Alternate 1

The following is proposed under this alternative:

- Bus/Transit Improvements:
  - New southbound bus stops are shown on York Street, as conversion from one-way to two-way will allow the ability for southbound bus routing along York Street. Final determination on southbound bus routing to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sharrows (shared-lane bicycle pavement markings) would be installed along York Street under Alternate 1 paired with several raisedintersection traffic calming improvements, and two existing raisedcrosswalks, aimed at physically precluding automobile speeding and to keep motorist versus bicyclist speed differences somewhat comparable. It is noted that sharrows are only appropriate if motorist travel speeds are kept to 20mph or less.
  - The exception to the above is that a northbound bicycle lane would be installed on York Street from Elm Street to Grove Street in Alternate 1. Shown as well is the potential for protected bicycle lanes to also be installed on Tower Parkway and the western portion of Grove Street as part of those streets becoming two-way (under separate City/State project).
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - As mentioned above, raised-intersection traffic calming improvements are proposed at multiple locations in Alternate 1.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - York Street would be reconfigured to remove the multiple one-way northbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - Approximately 85 percent of the 147 on-street parking spaces would remain under this concept for York Street between MLK Jr. Boulevard and Grove Street. Potential new on-street loading and handicap

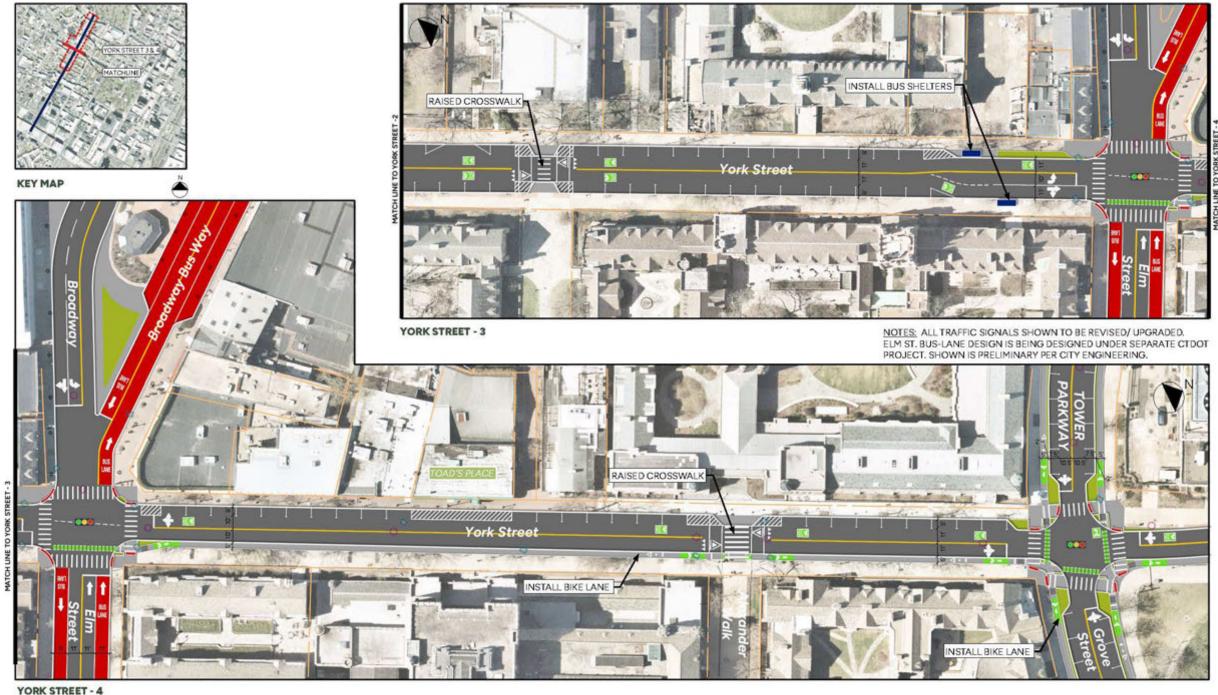





accessible parking space locations within the on-street parking are to be determined during further design stages.

- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of York Street at Crown Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent non-study-corridor intersecting street modifications:
  - Elm Street, as mentioned earlier, is expected to be redesigned for BRT under separate state project.
  - York Street south of MLK Jr. Boulevard is expected to be converted to two-way under at separate city project.
  - The MLK Jr. Boulevard approach to York Street should be reconfigured to provide a more user-friendly protected-bicycle lane.
  - George Street west of York Street is understood may be reconfigured to include a bicycle lane and/or become two-way in the future as part of a separate city project.
  - Crown Street is shown to remain one-way westbound but with a potential reconfiguration to accommodate bicycle lane.
  - Grove Street/Tower Parkway it is understood will be converted to two-way under separate City and/or State project.




Two-Way Conversion Concept Design – York Street - Alternate 1 Figure 4.5



CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - YORK STREET **%SLR** 







**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - YORK STREET



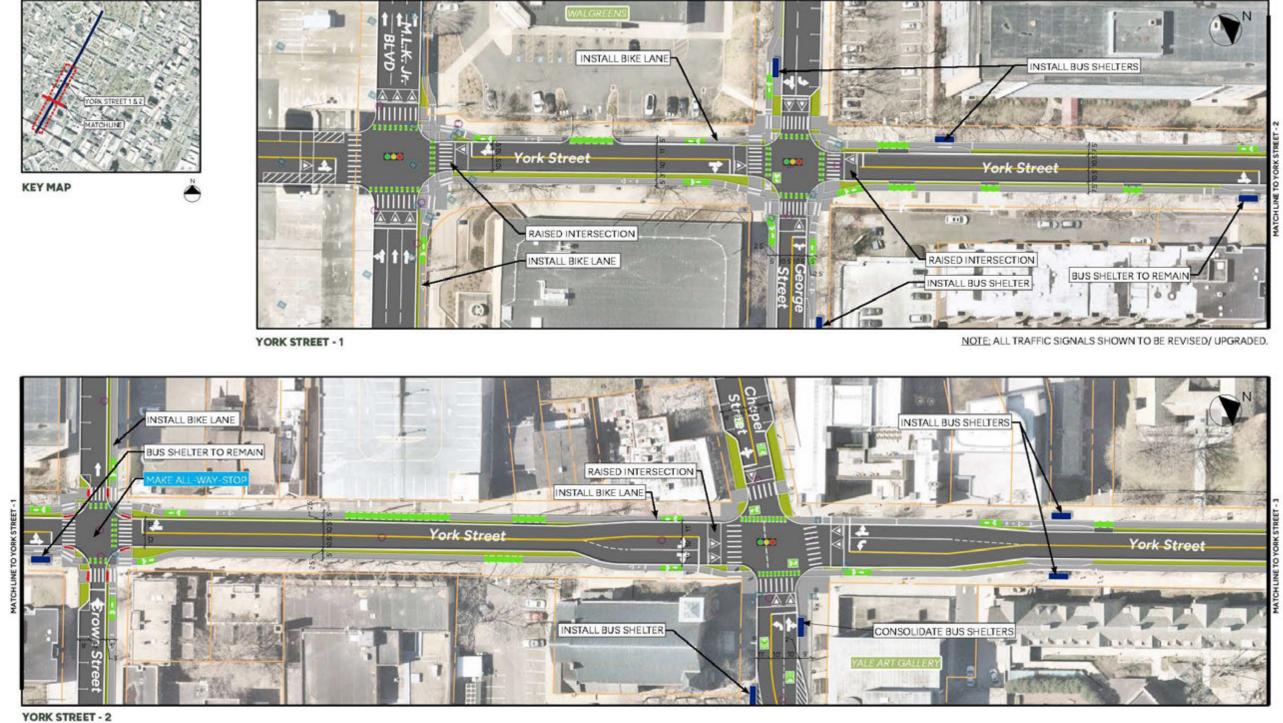


## 4.1.4 York Street – Alternate 2

The following is proposed under this alternative:

- Bus/Transit Improvements:
  - New southbound bus stops are shown on York Street, as conversion from one-way to two-way will allow the ability for southbound bus routing along York Street. Final determination on southbound bus routing to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sidewalk-level one-direction protected bicycle lanes would be added to the entire study-area stretch of York Street in each direction northbound and southbound on each side of the street in place of most of the onstreet parking in Alternate 2.
  - The exception to the above is that a two-way cycle track would be installed on the east side of York Street between Elm and Grove Streets in Alternate 2 to keep some on-street parking along these blocks. Note that this would necessitate some widening into the east sidewalk tree belt.
  - Special attention would be paid to bicycle lane conflicts at local-bus-stop by either narrowing the bicycle lane as necessary into a yield-area for bicyclists to give way to, and importantly provide sufficient room for, boarding/alighting bus-riders, or to weave the bicycle lane behind the bus stop area entirely where ROW would allow.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - As with Alternate 1 for York Street, raised-intersection traffic calming improvements are proposed at multiple locations in Alternate 2.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - York Street would be reconfigured to remove the multiple one-way northbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.





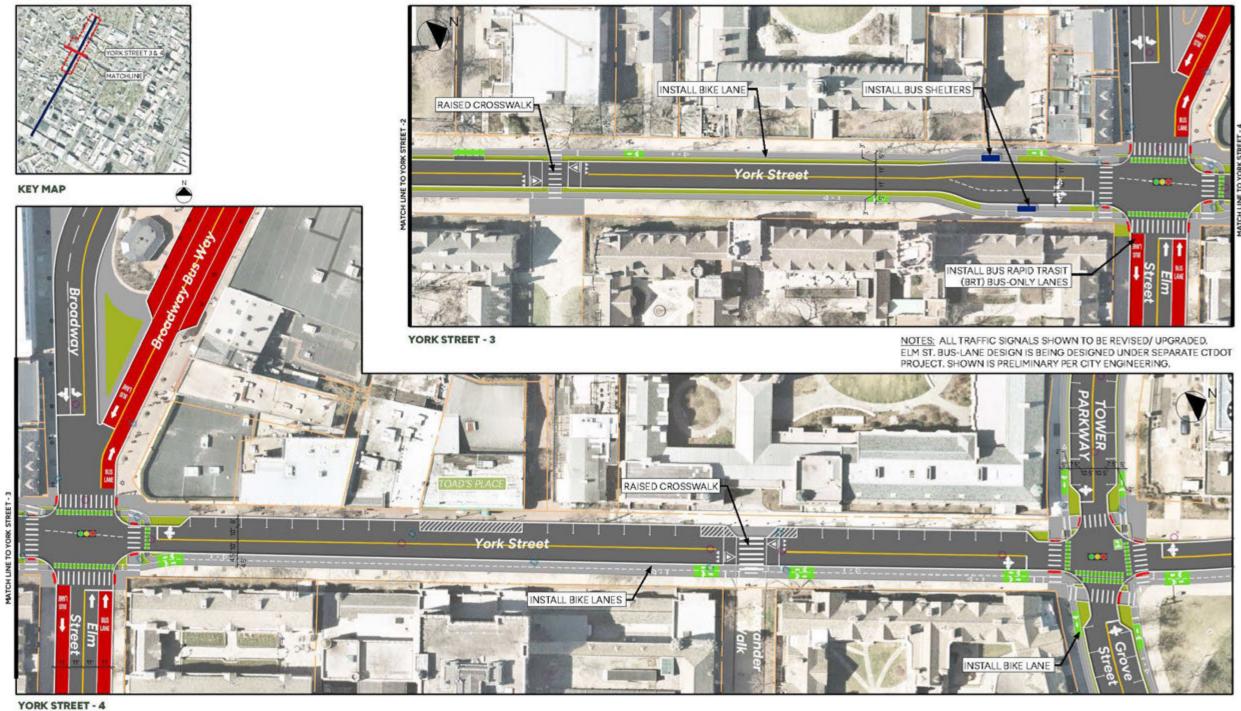

- **On-street Parking Accommodations:** 
  - Approximately 17 percent of the 147 on-street parking spaces would 0 remain under this Alternate 2 concept for York Street between MLK Jr. Boulevard and Grove Street. On-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages. Again, it should be reminded that there are many more parking spaces that are empty within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for 0 a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of York Street at Crown Street has the potential to be 0 unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the 0 signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Elm Street, as mentioned earlier, is expected to be redesigned for BRT 0 under separate state project.
  - York Street south of MLK Jr. Boulevard is expected to be converted to 0 two-way under at separate city project.
  - The MLK Jr. Boulevard approach to York Street should be reconfigured to 0 provide a more user-friendly protected-bicycle lane.
  - George Street west of York Street is understood may be reconfigured to 0 include a bicycle lane and/or become two-way in the future as part of a separate city project.
  - Crown Street is shown to remain one-way westbound but with a potential 0 reconfiguration to accommodate bicycle lane.
  - Grove Street/Tower Parkway it is understood will be converted to two-way 0 under separate City and/or State project.



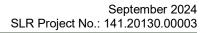


#### Two-Way Conversion Concept Design – York Street - Alternate 2 Figure 4.7




**%**SLR CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - YORK STREET

#SLR


30' 60' 0' 1/2" 1"



#### Two-Way Conversion Concept Design – York Street - Alternate 2 Figure 4.8



**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - YORK STREE



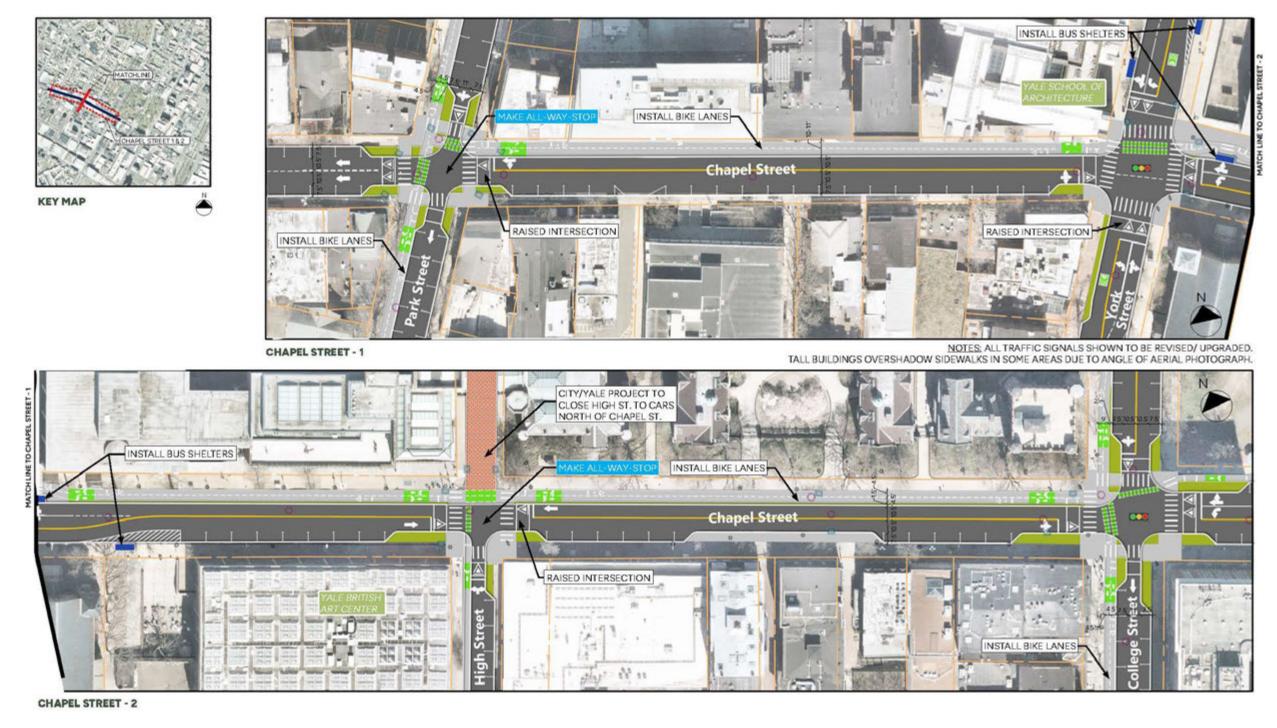


## 4.1.5 Chapel Street – Alternate 1

The following is proposed under this alternative:

- Bus/Transit Improvement:
  - A new eastbound sheltered bus stop is shown within the Chapel Street corridor study limits since conversion from one-way to two-way will allow the ability for eastbound bus routing along Chapel Street. Final determination on such to be made by City/State.
- Bicycle Infrastructure Accommodations/Improvements:
  - A sidewalk-level two-way cycle-track would be added to Chapel Street between Park Street and the Green/College Street in place of the north side on-street parking in Alternate 1. Note that this would necessitate some minor widening into the north sidewalk tree-belt.
  - Special attention would be paid to cycle-track conflict with the bus-stop on Chapel Street next to the Yale University Art Gallery by weaving the cycle-track behind the bus stop.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - Raised-intersection traffic calming improvements are proposed at multiple locations in Alternate 1.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - Chapel Street would be reconfigured to remove the multiple one-way westbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - Approximately half of the 78 on-street parking spaces would remain under this Alternate 1 concept for Chapel Street between Park Street and College Street. On-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages. Note that this could include the addition of accessible parking spaces on the north side of Chapel Street near High Street under Alternate 1 given the available width there. Again, it should be reminded that there are many more parking spaces that are empty within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey)






that more than offset the on-street parking spaces that would be repurposed under this concept.

- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of Chapel Street at Park Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Park Street, particularly north of Chapel Street, should be considered for reconfiguration to add bicycle lanes or a two-way cycle-track to connect this Alternate 1 proposed Chapel Street cycle-track with the forthcoming Edgewood Avenue cycle-track to provide a seamless bicycle route connecting the Green/Downtown with the neighborhoods to the west.
  - High Street north of Chapel Street is understood will be converted to a pedestrian/non-motorist street by Yale through its campus.
  - College Street south of Chapel Street (to Crown Street) has recently had an on-street painted (southbound) bicycle lane that was a quick-build installation as part of outdoor parklet dinning. This bicycle lane could be converted to a two-way cycle-track that could be extended further north/south on College Street. It is understood that the City may separately be considering other potential alterations to College Street.
  - Chapel Street east of College Street currently has a parking-protected street-level westbound bicycle lane that could be reconfigured somewhat at this intersection to become more user-friendly.



Figure 4.9 Two-Way Conversion Concept Design – Chapel Street - Alternate 1



### **CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - CHAPEL STREET**





## 4.1.6 Chapel Street – Alternate 2

The following is proposed under this alternative:

- Bus/Transit Improvement:
  - A new eastbound sheltered bus stop is shown within the Chapel Street corridor study limits since conversion from one-way to two-way will allow the ability for eastbound bus routing along Chapel Street. Final determination on such to be made by City/State.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sharrows (shared-lane bicycle pavement markings) would be installed along Chapel Street under Alternate 2 paired with several raisedintersection traffic calming improvements aimed at physically precluding automobile speeding and to keep motorist versus bicyclist speed differences somewhat comparable. It is noted that sharrows are only appropriate if motorist travel speeds are kept to 20mph or less.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - As mentioned above, raised-intersection traffic calming improvements are proposed at multiple locations in Alternate 2.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - Chapel Street would be reconfigured to remove the multiple one-way westbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - Approximately all of the on-street parking spaces on Chapel Street between Park Street and College Street would remain under this Alternate 2 concept. Potential new on-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of Chapel Street at Park Street has the potential to be unsignalized and instead function under stop-sign-control, since





continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.

- Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Park Street, particularly north of Chapel Street, should be considered for reconfiguration to add bicycle lanes or a two-way cycle-track.
  - High Street north of Chapel Street is understood will be converted to a pedestrian/non-motorist street by Yale through its campus.
  - College Street south of Chapel Street (to Crown Street) has recently had an on-street painted (southbound) bicycle lane that was a quick-build installation as part of outdoor parklet dinning. This bicycle lane could be converted to a two-way cycle-track that could be extended further north/south on College Street. It is understood that the City may separately be considering other potential alterations to College Street.
  - Chapel Street east of College Street currently has a parking-protected street-level westbound bicycle lane that could be reconfigured somewhat to become more user-friendly at this intersection.





# ∜SLR

**KEY MAP** 

#### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - CHAPEL STREET

74



Contraction of

Chapel Street

### Figure 4.10 Two-Way Conversion Concept Design – Chapel Street - Alternate 2







# 4.1.7 George Street

The following is proposed under this alternative:

- Bus/Transit Improvement:
  - New westbound bus stops are shown on George Street since conversion from one-way to two-way will allow the ability for westbound bus routing along George Street. Final determination of such to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sidewalk-level one-direction protected bicycle lanes would be added to the entire study-area stretch of George Street in each direction eastbound and westbound on each side of the street in place of the limited amount of existing on-street parking in this concept.
  - Special attention would be paid to bicycle lane conflicts at local-bus-stop by either narrowing the bicycle lane as necessary into a yield-area for bicyclists to give way to, and importantly provide sufficient room for, boarding/alighting bus-riders, or to weave the bicycle lane behind the bus stop area entirely if ROW would allow.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - Raised-intersection traffic calming improvements are proposed at multiple locations along George Street.
  - Corner curb-extensions/bump-outs would be added where possible. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing on them.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - George Street would be reconfigured to remove the multiple one-way eastbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - The 24 on-street parking spaces on the south side of George Street between York and College Streets would be removed under this concept. It should be noted that on-street loading and handicap accessible parking spaces exist or could be added nearby to other streets generally within 1 block. Again, it should be reminded that there are many more parking spaces that are empty within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-






Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.

- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of George Street at High Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - George Street west of York Street is understood may be reconfigured to include a bicycle lane and/or become two-way in the future as part of a separate city project.
  - George Street east of Church Street has the potential to be reconfigured to add bicycle lanes.
  - College Street north and south of George Street has the potential to be reconfigured to install a north/south two-way cycle-track. It is noted that the City may separately be considering other potential alterations to College Street including possibly making it two-way.
  - Temple Street south of George Street is to be converted to two-way as part of the Downtown Crossing Project - Phase 4. Temple Street north of George Street is recommended as part of this study to also be converted to two-way to allow additional routing options to get to the Temple Street Parking Garage and the Gateway Community College Parking Garage, as well as to other nearby parking options including the Crown Street Garage.

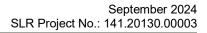
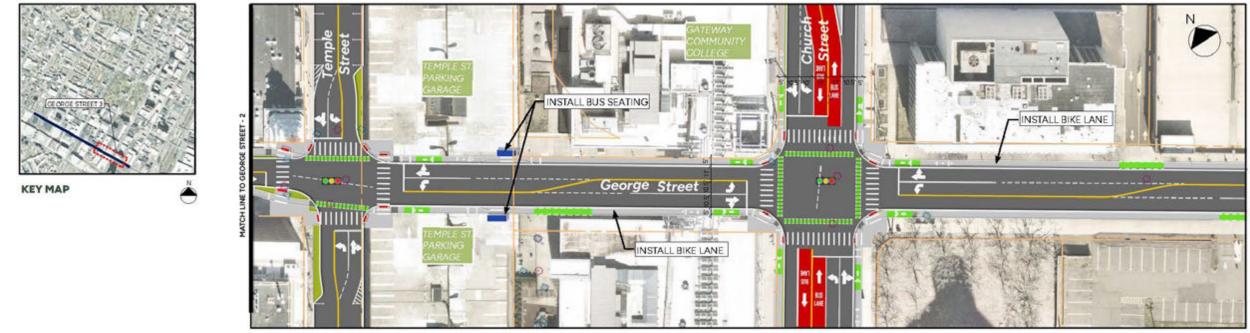



Figure 4.11 Two-Way Conversion Concept Design – George Street



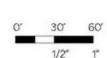
#### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - GEORGE STREET


# **%SLR**



0' 30' 60' 1/2"




Figure 4.12 Two-Way Conversion Concept Design – George Street



**GEORGE STREET - 3** 

**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - GEORGE STREET

NOTE: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED.



1



# 4.1.8 Study Area Signal Upgrades

- The concepts assume traffic signals within each corridor will be upgraded as follows:
  - New signal infrastructure including new signal heads, mast arms, vehicle detection, etc. Many of the study intersections have sub-standard equipment and some intersections currently operate inefficiently as pretimed signals.
  - WALK/DON'T WALK countdown pedestrian signal indications, as well as Audible Pedestrian Signal (APS) elements.
  - Leading Pedestrian Interval (LPI), also known as a pedestrian head-start. LPI is especially feasible on streets with fewer lanes per direction and importantly can sometimes reduce wait times for both pedestrians and motorists compared to exclusive pedestrian signal phase configuration, reducing the likelihood of some pedestrians crossing without the walk signal.
  - No Turn-On-Red across the study intersections.
  - Optimized signal phasing, timing, and coordination/synchronization, including the likely reduction of signal cycle-lengths which could further help to reduce pedestrian and motorist wait times particularly during offpeak times of day.

# 4.2 Case-Study Examples

It is worth noting and seeing that there are real-world examples of the types of street design elements shown in this study's concept plans that exist today in the United States, elsewhere in Connecticut, and in some places in New Haven. This section discusses some examples of such applications.

### 4.2.1 Bus Rapid Transit Infrastructure

Existing places that have BRT or transit facilities with BRT-style elements such as bus-only-lanes include Boston, New York City, Richmond, Cleveland, Indianapolis, San Francisco, Seattle, and Albuquerque, just to name some cities across the country. Right here in Connecticut there is the New Britain-Hartford busway, which is an award-winning example of dedicated bus transit infrastructure in the United States.

BRT infrastructure is increasingly being recognized as a good option for cities and regions to provide better transit service at a lower cost than streetcar/rail while helping to achieve climate/sustainability goals and helping to give people a more reliable transit option to avoid automobile congestion, avoid driving/parking their own automobile, etc.








Figure 4.13 Center Running BRT with Right-Side Boarding – Boston, MA

Source: Google Maps







Figure 4.14 Center-Running BRT with Right-Side Boarding – Cleveland, OH

Source: NCO

## Figure 4.15 Center-Running BRT with Left-Side Boarding – Albuquerque, NM



Source: Google Maps







#### Figure 4.16 Curbside-Running Bus-Only Lane – New York, NY

Source: Google Maps

### 4.2.2 Safety Through Design

<u>Raised-intersections</u> and similar features such as raised-crosswalks, where the crosswalk or the whole intersection is raised to the level of the sidewalk, exist in some locations in New Haven and in some of the most walkable places elsewhere. Raised-intersections achieve multiple goals at once: they can improve ADA accessibility and calm traffic/reduce automobile speeding (which improves safety for everyone), reduce necessary driver-stopping-sight-distance lengths, and reduce the speed differential between automobiles and bicyclists in shared-lane/sharrow setting.



Figure 4.17 Raised-Intersection – New Haven, CT

Source: Google Maps





<u>Pedestrian Refuge Islands</u> and medians can allow for a pedestrian crossing to be made in two separate stages; where someone crossing the street can cross one direction (ideally one lane) of traffic at a time and is provided a physical area in the middle where they can pause if needed to assess to their ability at that moment to cross the second half of the street. Pedestrian islands, particularly where the number of traffic lanes are also minimized and lane widths are reasonably narrow, can also help calm traffic and prompt increased driver awareness.



### Figure 4.18 Pedestrian Refuge Island – Nashville, TN

Source: Google Maps (under construction)

Lane Reductions, in terms of reducing the number of automobile through-lanes, as mentioned above and also known as a roadway reconfiguration or road-diet, are also important parts of many urban street redesign projects to increase safety. As discussed in the existing conditions chapter, it bears reiterating that reducing the number of vehicle lanes, particularly through-lanes, in areas where pedestrians and other non-motorists are present reduces the potential of the multiple-threat collision. The multiple-threat collision occurs when a vehicle in one lane stops or yields for a pedestrian and in doing so temporarily blocks view of the pedestrian to another same-direction approaching motorist who doesn't see the pedestrian until it's too late.

<u>Curb-Extensions</u>, also known as Bump-outs, are often located at intersection corners and can improve pedestrian safety by shortening the distance that someone on foot needs to walk to cross from one side of the street to the other. Curb-extensions can improve visibility between motorists and pedestrians who are on the sidewalk waiting to cross, particularly if there is the presence of on-street parking. Moreover, curbextensions can physically preclude the ability for motorists to park on-street too closely to an intersection and/or a crosswalk. Curb-extensions can provide additional room for streetscape elements to be added including street furniture, appropriate vegetation, not to mention things like bioswales.







#### Figure 4.19 Curb Extensions/Corner Bump-outs – West Hartford, CT

Source: Google Maps

#### **Best-Practices Bicycle Infrastructure**

<u>Protected bicycle lanes</u>, such as those that are placed away from moving traffic between the sidewalk and typically the passenger-side of on-street parking, and/or those that may be curb-separated at the same elevated-level as the sidewalk (with or without the presence of on-street parking), are generally considered now to be the ideal bicycle facility design option – especially if proper attention is given to their design at intersections, known as the <u>Protected Intersection</u>. The reason for this is that bicyclists contend with fewer potential conflicts if the bike lane is located between the sidewalk and passenger-side of on-street parked vehicles instead of between moving automobiles and driver-side of parked vehicles. Protected bicycle lanes and the Protected-Intersection are also generally more comfortable/less stressful for bicyclist to use which encourages more people to ride bikes which can be a great sustainable-travel choice for short and moderate-length trips.



Source: Boston.gov



Source: NCO







#### Figure 4.20 Parking-Protected Sidewalk-Level Bike Lane - Cambridge, MA

Source: Google Maps

#### Protected Intersection – Seattle, WA Figure 4.21



Source: Seattle's First Protected Intersection Opens at Dexter and Thomas - The Urbanist





# 4.3 Safety Benefits of Potential Street Redesign Modifications

It is important to consider how modifying aspects of these streets could improve safety. Statistical data from the Federal Highway Administration (FHWA)<sup>1 2</sup> indicates that certain street/roadway changes and improvements, referred to as countermeasures, can improve safety. The following is a summary of several of the recommended street redesign elements and the degree of corresponding safety benefit, as reported by the FHWA, that could generally be anticipated.

| Proposed Improvement                                                   | FHWA<br>Countermeasure                                      | FHWA Safety Benefits                                                                                  |
|------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Reduction in Number of<br>Vehicle Lanes per<br>Directions              | Road Diets<br>(Roadway<br>Reconfigurations)                 | Up to 47% reduction in total crashes                                                                  |
| High-Visibility Crosswalks                                             | Crosswalk Visibility<br>Enhancements                        | Up to 40% reduction in crashes involving pedestrians                                                  |
| Raised Crosswalk(s) or<br>Raised Intersection                          | Install Raised<br>Pedestrian<br>Crosswalk or Speed<br>Humps | Up to 50% reduction in injury crashes                                                                 |
| Install Raised Medians/<br>Pedestrian Crossing<br>Islands              | Raised Medians/<br>Pedestrian Crossing<br>Islands           | Up to 56% reduction in crashes involving pedestrians                                                  |
| Install Pedestrian<br>Countdown Signal Heads                           | Install Pedestrian<br>Countdown Timer                       | Up to 70% reduction in crashes involving pedestrians                                                  |
| Incorporate Leading<br>Pedestrian Interval (LPI) to<br>Traffic Signals | Leading Pedestrian<br>Interval                              | Up to 13% reduction in crashes involving pedestrians                                                  |
| Improved Overhead<br>Lighting                                          | Lighting                                                    | Up to 38% reduction in nighttime crashes and 42% reduction in nighttime crashes involving pedestrians |
| Separated and/or<br>Protected-Bicycle Lanes                            | Bicycle Lanes                                               | Up to 30% reduction in total crashes and 53% reduction in crashes involving bicyclists                |

### Table 4.1 Street Redesign Safety Benefits

<sup>2</sup> <u>http://www.cmfclearinghouse.org/</u>





<sup>&</sup>lt;sup>1</sup> <u>https://safety.fhwa.dot.gov/provencountermeasures/</u>

# 4.4 Two-Way Concepts Public Input

The alternate concept plans were presented to the public at an in-person public information meeting that was held on October 18, 2023, as well as via a <u>New Haven Independent article</u> on November 9, 2023. Much public input was received on the concepts. The following is a short summary of the meeting (a full meeting summary can be found in the appendix).

### **Church Street**

There was generally more support for the BRT concept (alternate 1), with some people noting that the raised platforms for BRT will add a nice infrastructure enhancement, some noting that bus-only lanes are important to increase the attractiveness and usefulness of transit as an option to a wider variety of income levels, and some asking if additional bus-only lanes could be added elsewhere. There was support to include bike paths, and even to make them wider to encourage social cycling and to increase the separation between bike lanes and automobiles physically as opposed to with flex posts. That said some people suggested that bike lanes not be added to Church Street but to other nearby streets instead. There was some support for removing on-street parking but also concern by others about loss of on-street parking.

### **York Street**

There was mixed support for the two alternate concepts, but overall broad support for reducing speeds on York Street such as by adding raised-raised intersections. In either York Street alternative (1 and 2), on-street parking would remain on nearby cross-streets, as well as at the Chapel/York Garage. Some people commented that all the on-street parking should be removed to enable better bicycle routes, while others commented about the potential loss of all on-street parking and the need for loading/deliveries for shops, restaurants, and the Yale Art Gallery. The need for artwork pickups and deliveries by tractor trailer from the dock located at 201 York Street was raised by the Yale Art Gallery's Director of Facilities. The relocation of bus shelters and handicap parking spaces was also raised as a concern by the Yale Art Gallery's Facilities Director. Regarding Alternative 1, he also questioned whether there would be more traffic bottleneck if traffic needed to be stopped in both directions on York Street during large truck deliveries.

### **Chapel Street**

Like with York Street, there was mixed support for the two alternate concepts but broad support for traffic calming to preclude speeding. There was also a suggestion that all of Chapel Street west of the study area should be converted to two-way. There may have been slightly more support for Chapel Street Alternate 1, which would add a two-way cycle track along the north side of Chapel Street in place of on-street parking. Some commented that it would be good to also add a two-way cycle track on Park Street (as well as other connecting streets) that could connect with the Edgewood cycle track. Other commenters questioned whether one-way bicycle lanes on either side of the street would be better than a two-way cycle track on one side of the street. Concern was raised about the loss of some on-street parking. One person asked about traffic-signal operations for bicyclists and pedestrians.

### **George Street**

There was some concern about loss of on-street parking on George Street, although another commenter mentioned that George Street within the study area only has two-dozen on-street





parking spaces today - which is a tiny fraction compared to the amount of garage parking that is adjacent to George Street and on cross streets. Those in support of the proposed bicycle lanes generally suggested that sidewalk-level bicycle lanes are preferrable. Another comment was that bicycle facilities should be added to nearby Crown Street. One comment suggested that one or more intersections should be un-signalized and converted to stop-sign control instead.

### **General Comments**

In general, the majority of comments support making all of these streets two-way, but some comments were received about possibly keeping some streets (such as York Street) one-way to more easily add a bicycle lane and keep all on-street parking such as by converting one of the automobile lanes into a bike lane. There was general support for adding bicycle lanes, reducing speeds downtown, and improving transit accommodations. But there was also some concern about ability of delivery vehicles to park on-street and about loss of at least some on-street parking. To offset loss of some on-street parking, some commenters noted that there is significant surplus capacity of off-street parking in surrounding parking garages and that it may be appropriate as part of the two-way conversion to temporarily lower the cost to park in some downtown garages and to change some remaining on-street parking spaces to ADA accessible parking spaces, 15-minute parking, and loading zones to better accommodate local businesses.

# 4.5 City TTP and Engineering Input

In the subsequent months, further discussion was had, and feedback was received, on SLR's alternate two-way concepts from the City of New Haven Engineering Department and TTP Department. High-level comments were brought up about how to best coordinate the potential two-way conversion plans for these portions of Church, York, Chapel, and George Streets with other adjacent City and State roadway and intersection projects that are on different timelines, as well as whether it is possible to implement all of the two-way conversion at once. Technical review comments were also provided about intersection geometry and capacity relative to the BRT station locations and design for Church Street, and about potential impact on bioswales, street trees, and utilities in some areas. The TTP Department also directed that the preferred concept plans keep as much on-street parking as possible.



# 5.0 Preferred Concept & Cost Estimates

The Preferred Two-Way Conversion Concept Plans for the study corridors contain design elements from both of the alternate concepts discussed above and are based on the public input and the input from the City Engineering and TTP departments. The Preferred Concepts, which are shown on Figure 5.1 through Figure 5.7, involved some revisions to the alternate-plan designs including to lane striping and to curb relocations in some areas, for transit bus maneuverability, and based on additional review of potential utility impacts including to bioswales, catch basins and poles.

It is the hope that these Preferred Concept Plans can be used to help secure funding to design and construction of the two-way conversion.

The following is a summary of the key design elements, categorized by transportation mode, shown in the Preferred Concepts Plan for each study corridor:

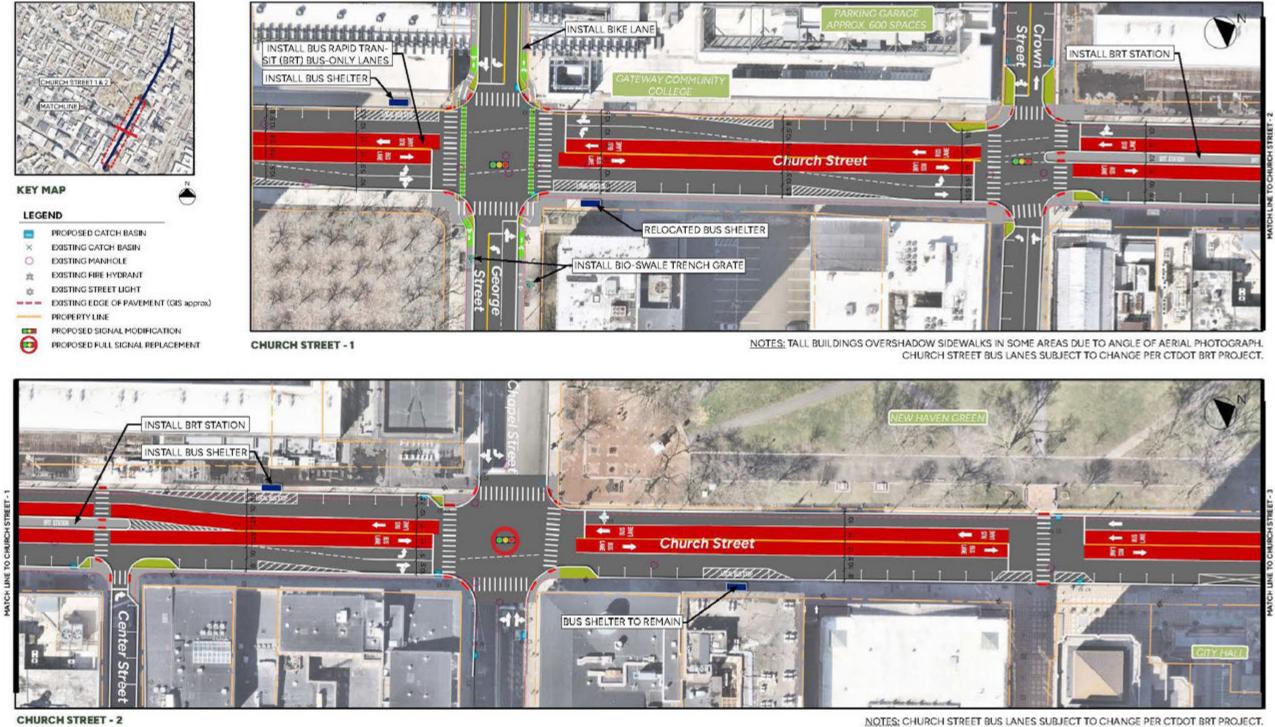
# 5.1 Church Street – Preferred Concept

- Bus/Transit Improvements:
  - Addition of BRT design with center-running bus-only lanes on Church Street south of Elm Street in the Preferred Concept.
    - The BRT station in the study area would be a center platform with leftside-boarding on Church Street between Crown and Center Streets.
       (Other BRT stations nearby would exist likely on Church Street South to the south and on Elm Street to the northwest.)
    - Note that bus-only lanes are able to be used by emergency vehicles.
  - Some relocated and consolidated local-bus/non-BRT stops northbound on Church Street, particularly along the blocks that would overlap with BRT.
  - Conversion from one-way to two-way will allow the ability for southbound bus routing along Church Street, particularly for bus routes that currently route southbound on Temple Street 1 block over. Consolidating both northbound and southbound, or inbound and outbound, bus stops to a single street, instead of a pair of streets block(s) apart, can simplify transit routing and the rider experience. New southbound bus stops are shown on Church Street in the Preferred Concept. Note that some local buses could perhaps remain on Temple Street southbound through some or all of downtown given the abundance of existing bus stops on Temple Street at the Green and due to the lack of right-of-way (ROW) width of Church Street by the Green. Final determination on this to be made by City/State during further development of the design plans.
  - Addition of bus shelters to all bus stops.
  - BRT-style signal infrastructure including Transit Signal Priority (TSP), transit-only signal heads, and/or transit signal pre-emption.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sidewalk-level two-way cycle-track would be added to Church Street between Elm Street and Grove Street, which could connect with a potential bicycle lane on Grove Street.



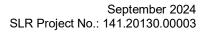


- Special attention would be paid to cycle-track conflicts at local-bus-stops by narrowing the bicycle lanes into a yield-area for bicyclists to give way to, and provide sufficient room for, boarding/alighting bus-riders, or by placing the cycletrack behind the bus stops.
- Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - The center BRT station on between Crown Street and Center Street would function as pedestrian refuge median for crosswalks the crosswalks at those locations.
  - Corner curb-extensions/bump-outs would be added at multiple locations along this corridor, which will reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - o All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary (discussed further below). This would include the addition of Leading Pedestrian Intervals (LPI).
  - Much of the corridor would be reconfigured to remove the multiple all-purpose single-direction automobile through-lanes that exist today. This will reduce incidences of motorist weaving and speeding, reduce the potential for the multiple-threat collision, and make the downtown street look and feel less like a highway. Automobile lane widths would furthermore be narrowed as feasible.
- On-street Parking Accommodations:
  - Approximately two-thirds of the current 130 on-street parking spaces would remain under this concept for Church Street between George and Grove Streets. Some minor widening of Church Street near City Hall may be needed for this concept. On-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages. It should also be reminded that there are many orders-of-magnitude more parking spaces that are empty within off-street parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersections. Where left turn lanes are proposed along Church Street, particularly at intersections that would also have bus-only lanes, those lefts would be allowed only as signal-controlled protectedleft-turns for safety purposes.
  - The intersection of Church Street at Wall Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.





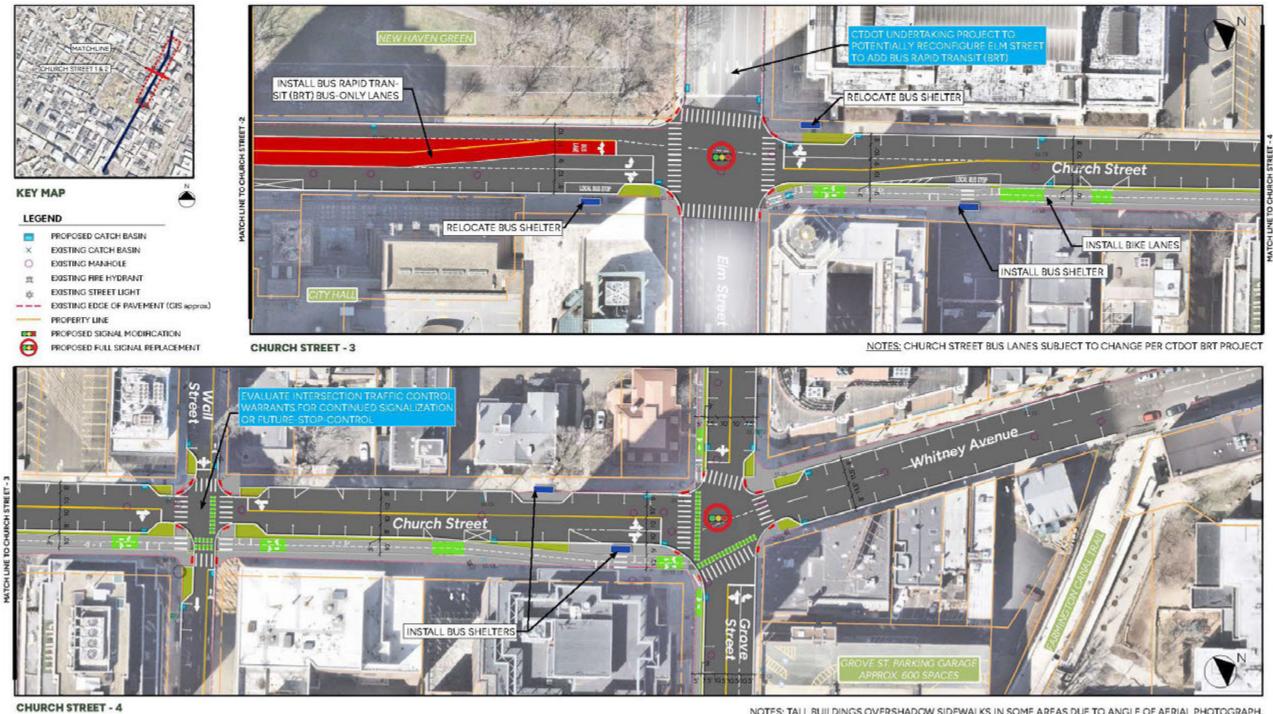

- Traffic signal phasing and timings to be modified and optimized at the signalized 0 intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Elm Street, as mentioned above, is to be redesigned for BRT under separate 0 state project.
  - Crown Street west of Church Street (between Church and Temple Streets) is 0 recommended as part of this study to be converted to two-way to allow additional routing options to get to the Temple Street Parking Garage and the Gateway Community College Parking Garage.
  - Grove Street it is understood will be converted to two-way under a separate City 0 and/or State project, which may include the addition of a bicycle lane to one side of Grove Street.




### Figure 5.1 Two-Way Conversion Preferred Design – Church Street



#### #SLR CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - CHURCH STREET


# **%SLR**







# Figure 5.2 Two-Way Conversion Preferred Design – Church Street



**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - CHURCH ST

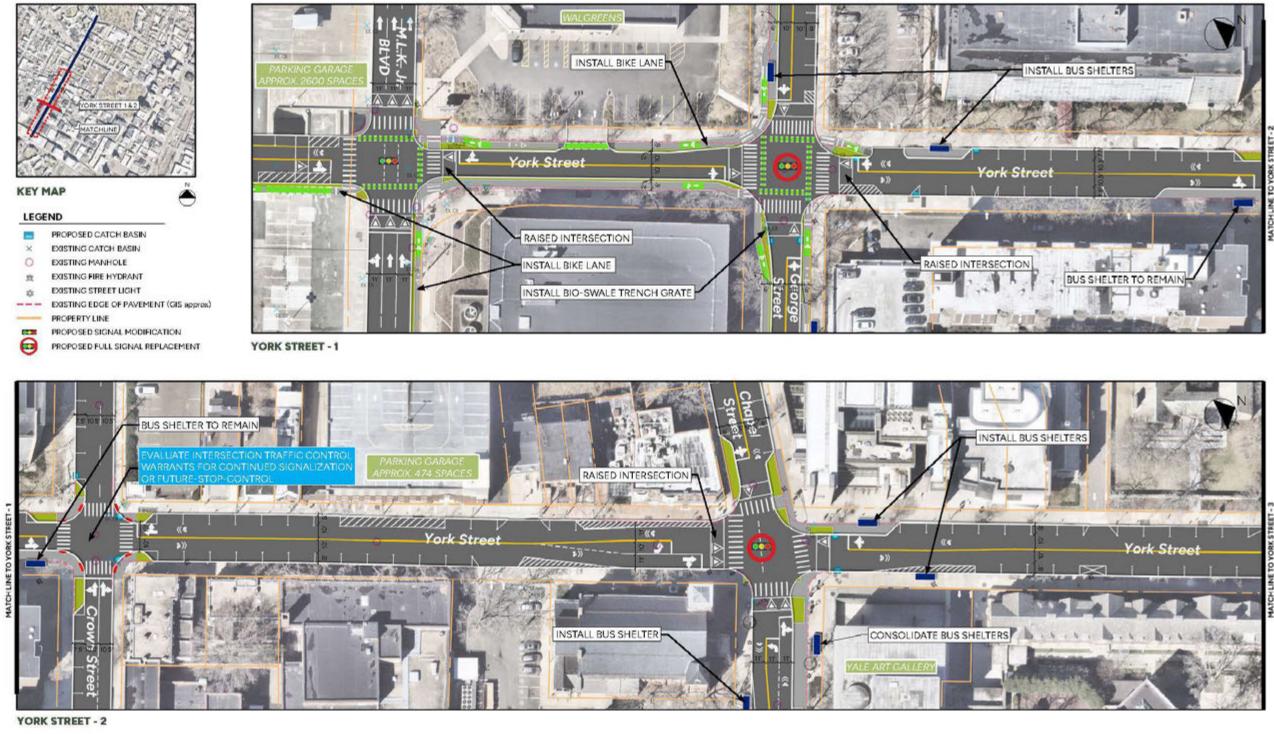
NOTES: TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.



# 5.2 York Street – Preferred Concept

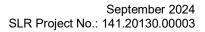
- Bus/Transit Improvements:
  - New southbound bus stops are shown on York Street, as conversion from oneway to two-way will allow the ability for southbound bus routing along York Street. Final determination on southbound bus routing to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sharrows (shared-lane bicycle pavement markings) would be installed along York Street, paired with several raised-intersection traffic calming improvements, and two existing raised-crosswalks, aimed at physically precluding automobile speeding and to keep motorist versus bicyclist speed differences somewhat comparable. It is noted that sharrows are only appropriate if motorist travel speeds are kept to 20 mph or less.
  - The exception to the above is that bicycle lanes would be installed on York Street between George Street and MLK Jr. Boulevard. Shown as well is the potential for protected bicycle lanes to also be installed on Tower Parkway and the western portion of Grove Street as part of those streets becoming two-way (under separate City/State project).
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - As mentioned above, raised-intersection traffic calming improvements are proposed at multiple locations in the Preferred Concept.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - o All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - York Street would be reconfigured to remove the multiple one-way northbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - Almost all the on-street parking spaces would remain under this concept for York Street between MLK Jr. Boulevard and Grove Street. Potential new on-street loading and handicap accessible parking space locations within the on-street parking are to be determined during further design stages.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.






- The intersection of York Street at Crown Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
- Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent non-study-corridor intersecting street modifications:
  - Elm Street, as mentioned earlier, is expected to be redesigned for BRT under separate state project.
  - York Street south of MLK Jr. Boulevard is expected to be converted to two-way under at separate city project.
  - The MLK Jr. Boulevard approach to York Street should be reconfigured to provide a more user-friendly protected-bicycle lane.
  - George Street west of York Street is understood may be reconfigured to include a bicycle lane and/or become two-way in the future as part of a separate city project.
  - Grove Street/Tower Parkway it is understood will be converted to two-way under separate City and/or State project.

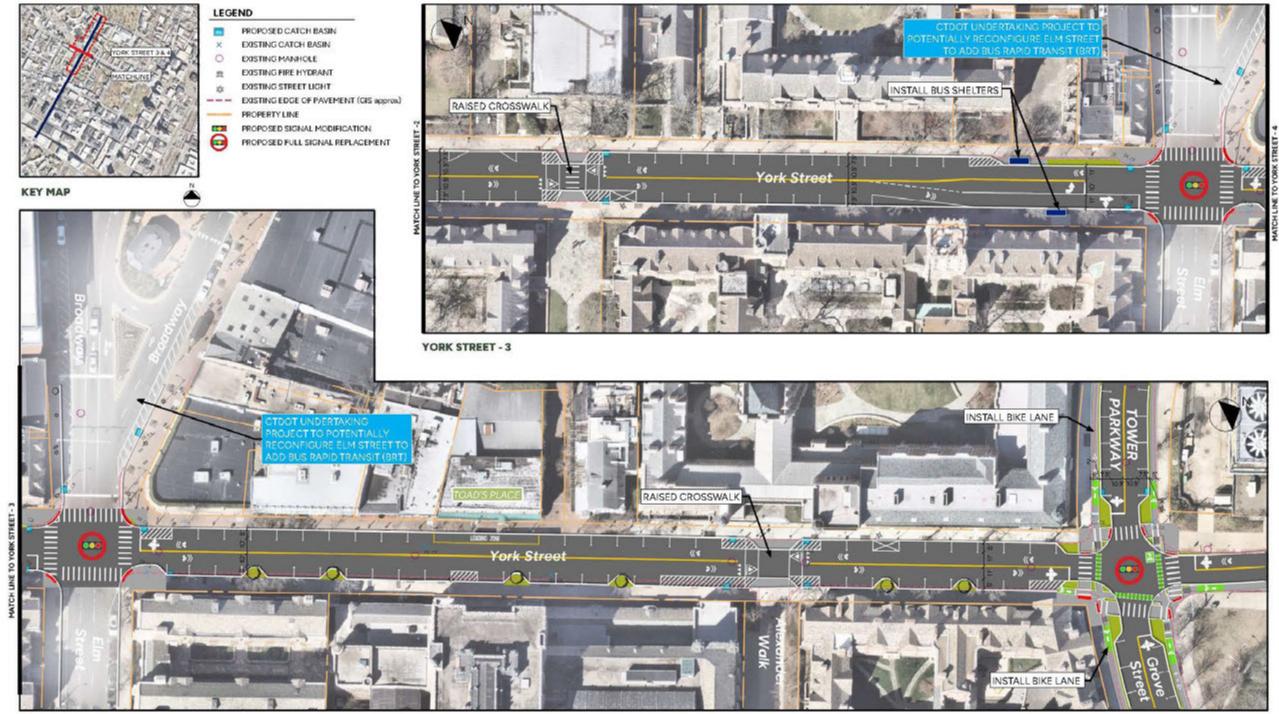





#### **Two-Way Conversion Preferred Design – York Street** Figure 5.3



**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - YORK STREET


# **%SLR**



30' O' 60' 1/2" 1"



## Figure 5.4 Two-Way Conversion Preferred Design – York Street



YORK STREET - 4

CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - YORK STREET **%**SLR





or 30' 60' 1/2' 1'



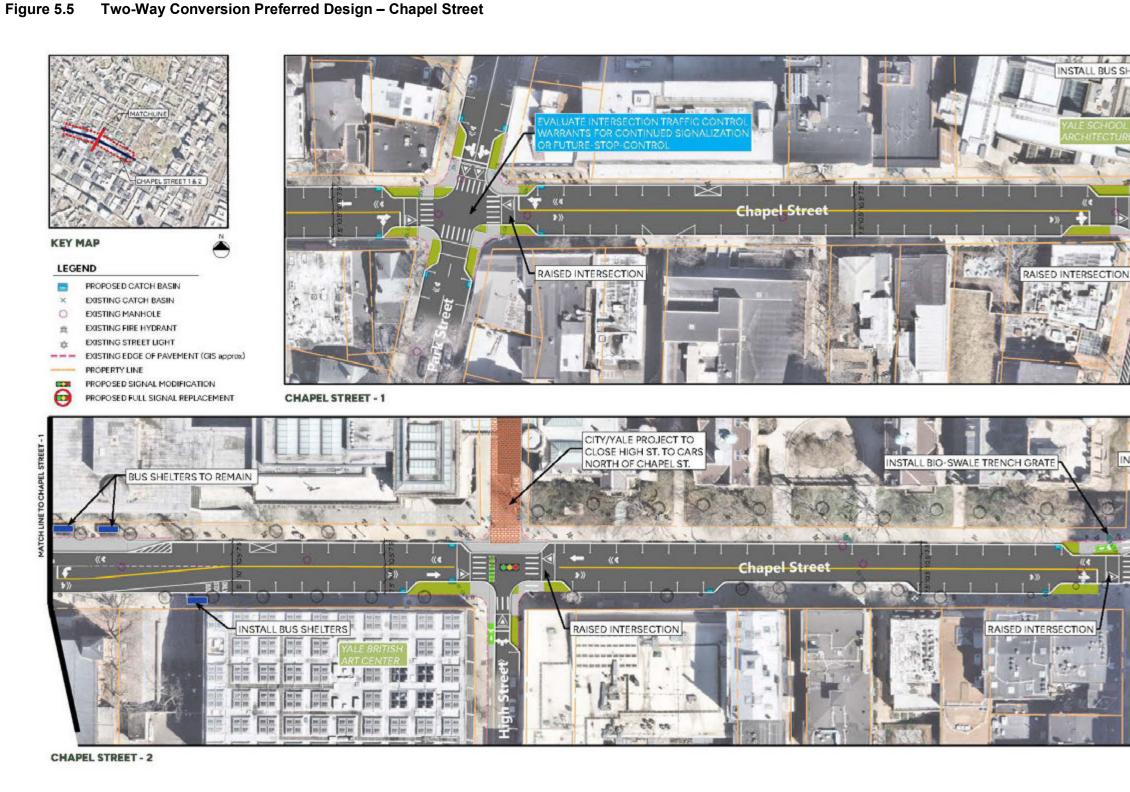
# 5.3 Chapel Street – Preferred Concept

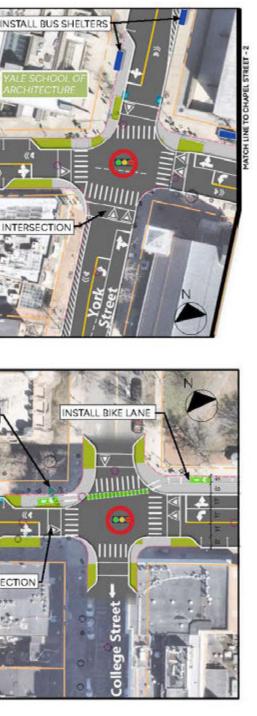
- Bus/Transit Improvement:
  - A new eastbound sheltered bus stop is shown within the Chapel Street corridor study limits since conversion from one-way to two-way will allow the ability for eastbound bus routing along Chapel Street. Final determination on such to be made by City/State.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sharrows (shared-lane bicycle pavement markings) would be installed along Chapel Street, paired with several raised-intersection traffic calming improvements aimed at physically precluding automobile speeding and to keep motorist versus bicyclist speed differences somewhat comparable. It is noted that sharrows are only appropriate if motorist travel speeds are kept to 20mph or less.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - As mentioned above, raised-intersection traffic calming improvements are proposed at multiple locations in the Preferred Concept.
  - Corner curb-extensions/bump-outs would be added where possible to locations along this corridor. Curb-extensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing at those locations.
  - o All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - Chapel Street would be reconfigured to remove the multiple one-way westbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - Approximately all of the on-street parking spaces on Chapel Street between Park Street and College Street would remain under this Alternate 2 concept. Potential new on-street loading and handicap accessible parking space locations within the remaining on-street parking are to be determined during further design stages.
- Automobile Infrastructure Modifications:
  - The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
  - The intersection of Chapel Street at Park Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
  - Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).





- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - Park Street, particularly north of Chapel Street, should be considered for reconfiguration to add bicycle lanes or a two-way cycle-track.
  - High Street north of Chapel Street is understood will be converted to a pedestrian/non-motorist street by Yale through its campus.
  - College Street south of Chapel Street (to Crown Street) has recently had an onstreet painted (southbound) bicycle lane that was a quick-build installation as part of outdoor parklet dinning. This bicycle lane could be converted to a two-way cycle-track that could be extended further north/south on College Street. It is understood that the City may separately be considering other potential alterations to College Street.
  - Chapel Street east of College Street currently has a parking-protected streetlevel westbound bicycle lane that could be reconfigured somewhat to become more user-friendly at this intersection.





# **%SLR**

South Central Regional Council of Governments (SCRCOG)/City of New Haven

New Haven One-Way to Two-Way Conversion Study and Concept-Design

#### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - CHAPEL STREET







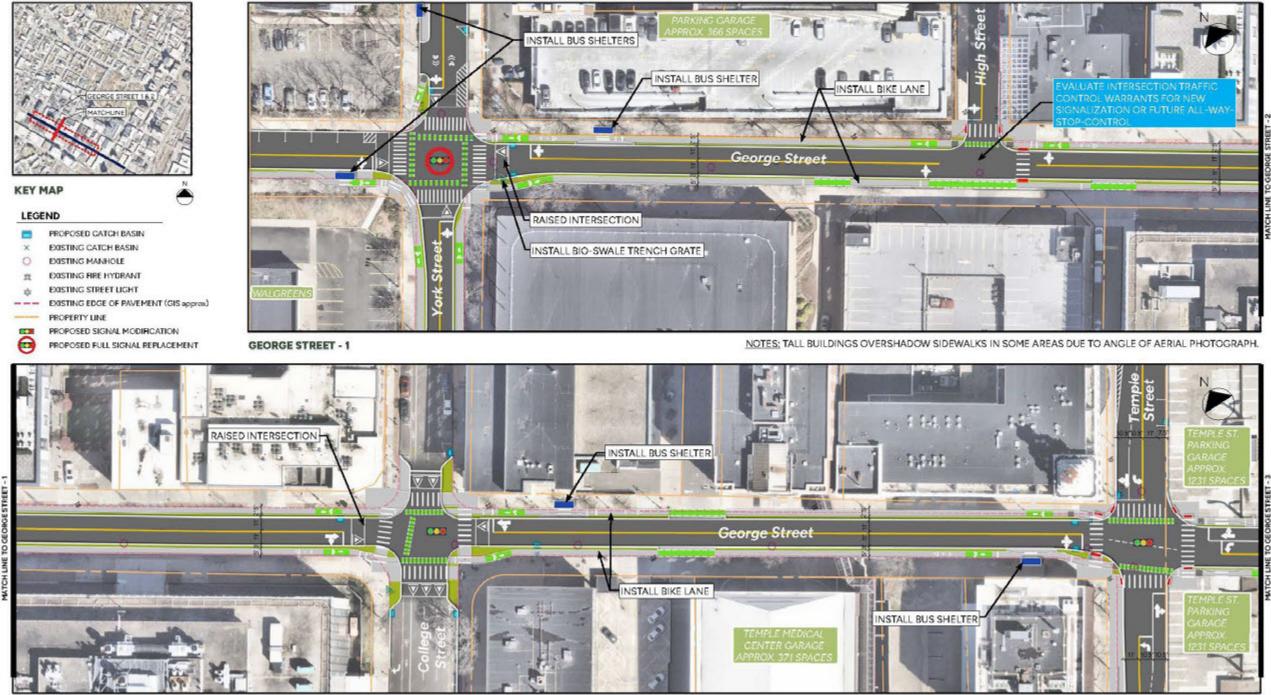
30' 60' 0' 1/2" 1"



# 5.4 George Street – Preferred Concept

- Bus/Transit Improvement:
  - New westbound bus stops are shown on George Street since conversion from one-way to two-way will allow the ability for westbound bus routing along George Street. Final determination of such to be made by City/State.
  - Addition of bus shelters to all bus stops.
- Bicycle Infrastructure Accommodations/Improvements:
  - Sidewalk-level one-direction protected bicycle lanes would be added to the entire study-area stretch of George Street in each direction eastbound and westbound on each side of the street in place of the limited amount of existing on-street parking in this concept.
  - Special attention would be paid to bicycle lane conflicts at local-bus-stop by either narrowing the bicycle lane as necessary into a yield-area for bicyclists to give way to, and importantly provide sufficient room for, boarding/alighting busriders, or to weave the bicycle lane behind the bus stop area entirely if ROW would allow.
  - Protected-intersection bicycle design elements would be added to intersections where width/ROW allows.
- Pedestrian Infrastructure and Traffic Calming Improvements:
  - Raised-intersection traffic calming improvements are proposed at multiple intersections with George Street.
  - Corner curb-extensions/bump-outs would be added where possible. Curbextensions reduce pedestrian crossing distances and allow pedestrians to be more visible when standing on them.
  - All crosswalks would be restriped as high-visibility crosswalks.
  - Pedestrian signal improvements would be incorporated to signalized intersections where necessary. This would include the addition of Leading Pedestrian Intervals (LPI).
  - George Street would be reconfigured to remove the multiple one-way eastbound automobile through-lanes that exist today, which will reduce incidences of motorist weaving and speeding and reduce the potential of the multiple-threat collisions.
- On-street Parking Accommodations:
  - The 24 on-street parking spaces on the south side of George Street between York and College Streets would be removed under this concept. It should be noted that on-street loading and handicap accessible parking spaces exist or could be added nearby to other streets generally within 1 block. Again, it should be reminded that there are many more parking spaces that are empty within offstreet parking (garages and lots) generally within 1 to 2 blocks nearby (per the City of New Haven Point-in-Time Transportation Survey) that more than offset the on-street parking spaces that would be repurposed under this concept.
- Automobile Infrastructure Modifications:






- The street layout would be reconfigured to more efficiently and safely, for a downtown built-environment, contain one all-purpose automobile through-lane per direction plus turn lane(s) at key intersection locations.
- The intersection of George Street at High Street has the potential to be unsignalized and instead function under stop-sign-control, since continued signalization of this intersection may not fully satisfy federal signal-warrant criteria. City may wish to study this further.
- Traffic signal phasing and timings to be modified and optimized at the signalized intersections along this corridor (discussed further below).
- Adjacent Non-Study-Corridor Intersecting-Street Modifications:
  - George Street west of York Street is understood may be reconfigured to include a bicycle lane and/or become two-way in the future as part of a separate city project.
  - George Street east of Church Street has the potential to be reconfigured to add bicycle lanes.
  - College Street north and south of George Street has the potential to be reconfigured to install a north/south two-way cycle-track. It is noted that the City may separately be considering other potential alterations to College Street including to possibly make it two-way.
  - Temple Street south of George Street is to be converted to two-way as part of the Downtown Crossing Project - Phase 4. Temple Street north of George Street is recommended as part of this study to also be converted to two-way to allow additional routing options to get to the Temple Street Parking Garage and the Gateway Community College Parking Garage, as well as to other nearby parking options including the Crown Street Garage.





#### Two-Way Conversion Preferred Design – George Street Figure 5.6



**GEORGE STREET - 2** 

**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - GEORGE STREET



30' 60' O' 1/2" 1"



#### Two-Way Conversion Preferred Design – George Street Figure 5.7



#### CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - GEORGE STREET **%SLR**





#### 5.5 Study Area Traffic Signal Upgrades

- The concepts assume traffic signals within each corridor will be upgraded as follows:
  - New signal infrastructure including new signal heads, mast arms, vehicle detection, etc. Many of the study intersections have sub-standard equipment and some intersections currently operate inefficiently as pretimed signals.
  - WALK/DON'T WALK countdown pedestrian signal indications, as well as Audible Pedestrian Signal (APS) elements.
  - Leading Pedestrian Interval (LPI), also known as a pedestrian head-start. LPI is especially feasible on streets with fewer lanes per direction and importantly can sometimes reduce wait times for both pedestrians and motorists compared to exclusive pedestrian signal phase configuration, reducing the likelihood of some pedestrians crossing without the walk signal.
  - No Turn-On-Red across the study intersections.
  - Optimized signal timing, phasing, and coordination/synchronization, including the likely reduction of signal cycle-lengths which could further help to reduce pedestrian and motorist wait times particularly during off-peak times of day.


#### 5.6 Preliminary Cost Estimates

Preliminary/Planning-level construction cost estimate totals for the preferred concept plans are as follows. Note that more detailed itemized preliminary cost estimates can be found in the Appendix.

| Church Street | \$7,306,800  |
|---------------|--------------|
| York Street   | \$7,824,000  |
| Chapel Street | \$3,981,600  |
| George Street |              |
| Total         | \$27,555,600 |







# Appendix A Level of Service Definitions

# New Haven One-Way to Two-Way Conversion Study: Final Report

South Central Regional Council of Governments (SCRCOG)/City of New Haven SLR Project No.: 141.20130.00003



## LEVEL OF SERVICE FOR

## SIGNALIZED INTERSECTIONS (MOTORIZED VEHICLE MODE)

Level of service for signalized intersections is defined in terms of control delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-min analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group. The criteria are given below.

| LEVEL-OF SERVICE CRITERIA FOR SIGNALIZED |
|------------------------------------------|
| INTERSECTIONS                            |

| LOS By Volume- | to-Capacity Ratio <sup>1</sup> |                         |
|----------------|--------------------------------|-------------------------|
| v/c ≤ 1.0      | v/c > 1.0                      | - CONTROL DELAY (s/veh) |
| Α              | F                              | <b>≤ 10</b>             |
| В              | F                              | > 10 AND ≤ 20           |
| С              | F                              | > 20 AND ≤ 35           |
| D              | F                              | > 35 AND ≤ 55           |
| Е              | F                              | > 55 AND ≤ 80           |
| F              | F                              | > 80                    |

<sup>1</sup> For approach-based and intersection-wide assessments, LOS is defined solely by control delay.

Specific descriptions of each LOS for signalized intersections are provided below:

**Level of Service A** describes operations with a control delay of 10 s/veh and 20 s/veh and a volumeto-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If LOS A is the result of favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

**Level of Service B** describes operations with control delay between 10 and 20 s/veh and a volumeto-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

**Level of Service C** describes operations with control delay between 20 and 35 s/veh and a volumeto-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

**Level of Service D** describes operations with control delay between 35 and 55 s/veh and a volumeto-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

<u>Level of Service E</u> describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

<u>Level of Service F</u> describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

Reference: Highway Capacity Manual 6, Transportation Research Board, 2016.

# LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS ALL-WAY STOP-CONTROL (AWSC)

The criteria for AWSC intersections have different threshold values than do those for signalized intersections primarily because drivers expect different levels of performance from distinct types of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an AWSC intersection. Thus a higher level of control delay is acceptable at a signalized intersection for the same LOS. The level-of-service criteria are given below.

| LEVEL-OF SERVICE CRITERIA | FOR AWSC INTERSECTIONS |
|---------------------------|------------------------|
| LOS <sup>1</sup>          | CONTROL DELAY (s/veh)  |
| Α                         | <b>≤ 10</b>            |
| В                         | > 10 AND ≤ 15          |
| С                         | > 15 AND ≤ 25          |
| D                         | > 25 AND ≤ 35          |
| E                         | > 35 AND ≤ 50          |
| F                         | > 50                   |

<sup>1</sup> For approaches and intersection-wide assessment, LOS is defined solely by control delay.

Note: LOS F is assigned to a movement if the volume-to-capacity ratio exceeds 1.0, regardless of the control delay.

Reference: Highway Capacity Manual Version 6.0, Transportation Research Board, 2016.


## LEVEL OF SERVICE FOR TWO-WAY STOP SIGN CONTROLLED INTERSECTIONS

The level of service for a TWSC (two-way stop controlled) intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service is not defined for the intersection as a whole. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. LOS criteria are given in the Table. LOS criteria are given below:

| LEVEL-OF SERVICE CRITERIA | FOR TWSC INTERSECTIONS |
|---------------------------|------------------------|
| LOS <sup>1</sup>          | CONTROL DELAY (s/veh)  |
| Α                         | <b>≤ 10</b>            |
| В                         | > 10 AND ≤ 15          |
| С                         | > 15 AND ≤ 25          |
| D                         | > 25 AND ≤ 35          |
| Е                         | > 35 AND ≤ 50          |
| F                         | > 50                   |

Note: LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection as a whole. LOS F is assigned to a movement if the volume-to-capacity ratio exceeds 1.0, regardless of the control delay

Reference: Highway Capacity Manual Version 6.0, Transportation Research Board, 2016.



# Appendix B Traffic Capacity Analyses Synchro Printouts

# New Haven One-Way to Two-Way Conversion Study: Final Report

South Central Regional Council of Governments (SCRCOG)/City of New Haven

SLR Project No.: 141.20130.00003



### New Haven Two-Way Study 1: Church Street & Chapel Street

|                         | ≯            | +     | *       | 4     | Ł     | ×    | •     | 1     | 1    | 1     | ţ     | -∢   |
|-------------------------|--------------|-------|---------|-------|-------|------|-------|-------|------|-------|-------|------|
| Lane Group              | EBL          | EBT   | EBR     | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     | ሻ            | f,    |         |       | ፋጉ    |      | ۲     | 4     |      | -     | 4     |      |
| Traffic Volume (vph)    | 25           | 180   | 25      | 50    | 285   | 80   | 75    | 410   | 70   | 25    | 150   | 50   |
| Future Volume (vph)     | 25           | 180   | 25      | 50    | 285   | 80   | 75    | 410   | 70   | 25    | 150   | 50   |
| Ideal Flow (vphpl)      | 1900         | 1900  | 1900    | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               | 1700         | -1%   | 1700    | 1700  | -3%   | 1700 | 1700  | -6%   | 1700 | 1700  | -2%   | 1700 |
| Storage Length (ft)     | 50           | 170   | 0       | 0     | 370   | 0    | 75    | 070   | 0    | 0     | 270   | 0    |
| Storage Lanes           | 1            |       | 0       | 0     |       | 0    | 1     |       | 0    | 0     |       | 0    |
| Taper Length (ft)       | 25           |       | 0       | 0     |       | 0    | 25    |       | 0    | 25    |       | U    |
| Lane Util. Factor       | 1.00         | 1.00  | 1.00    | 0.95  | 0.95  | 0.95 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         | 0.78         | 0.93  | 1.00    | 0.75  | 0.93  | 0.75 | 1.00  | 0.91  | 1.00 | 1.00  | 0.92  | 1.00 |
| Frt                     | 0.70         | 0.982 |         |       | 0.971 |      |       | 0.978 |      |       | 0.72  |      |
| Flt Protected           | 0.950        | 0.702 |         |       | 0.971 |      | 0.950 | 0.770 |      |       | 0.970 |      |
| Satd. Flow (prot)       | 1578         | 1395  | 0       | 0     | 2417  | 0    | 1394  | 1366  | 0    | 0     | 1449  | 0    |
| Flt Permitted           | 0.363        | 1393  | 0       | 0     | 0.826 | 0    | 0.950 | 1300  | 0    | 0     | 0.920 | 0    |
| Satd. Flow (perm)       | 0.303<br>468 | 1205  | 0       | 0     | 1932  | 0    | 1394  | 1366  | 0    | 0     | 1341  | 0    |
|                         | 408          | 1395  | 0<br>No | 0     | 1932  | 0    | 1394  | 1300  | 0    | 0     | 1341  | 0    |
| Right Turn on Red       |              |       | INO     |       |       | No   |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |              | 25    |         |       | 25    |      |       | 25    |      |       | 25    |      |
| Link Speed (mph)        |              | 25    |         |       | 25    |      |       | 25    |      |       | 25    |      |
| Link Distance (ft)      |              | 413   |         |       | 476   |      |       | 522   |      |       | 476   |      |
| Travel Time (s)         | 010          | 11.3  | 010     | 001   | 13.0  | 001  |       | 14.2  | 000  | 000   | 13.0  | 000  |
| Confl. Peds. (#/hr)     | 218          |       | 218     | 291   |       | 291  |       |       | 229  | 229   |       | 229  |
| Confl. Bikes (#/hr)     |              |       | 10      |       |       | 10   |       |       | 10   |       |       | 10   |
| Peak Hour Factor        | 0.79         | 0.79  | 0.79    | 0.90  | 0.90  | 0.90 | 0.88  | 0.88  | 0.88 | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 0%           | 9%    | 2%      | 2%    | 14%   | 5%   | 16%   | 10%   | 16%  | 2%    | 2%    | 2%   |
| Adj. Flow (vph)         | 32           | 228   | 32      | 56    | 317   | 89   | 85    | 466   | 80   | 27    | 163   | 54   |
| Shared Lane Traffic (%) |              |       |         | -     |       |      |       | =     | -    | -     |       |      |
| Lane Group Flow (vph)   | 32           | 260   | 0       | 0     | 462   | 0    | 85    | 546   | 0    | 0     | 244   | 0    |
| Turn Type               | Perm         | NA    |         | Perm  | NA    |      | Prot  | NA    |      | Perm  | NA    |      |
| Protected Phases        |              | 6     |         | -     | 2     |      | 7     | 4     |      |       | 8     | _    |
| Permitted Phases        | 6            |       |         | 2     |       |      |       |       |      | 8     |       |      |
| Detector Phase          | 6            | 6     |         | 2     | 2     |      | 7     | 4     |      | 8     | 8     |      |
| Switch Phase            |              |       |         |       |       |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 7.0          | 7.0   |         | 7.0   | 7.0   |      | 3.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0         | 17.0  |         | 17.0  | 17.0  |      | 7.0   | 17.0  |      | 17.0  | 17.0  |      |
| Total Split (s)         | 32.0         | 32.0  |         | 32.0  | 32.0  |      | 15.0  | 47.0  |      | 32.0  | 32.0  |      |
| Total Split (%)         | 35.6%        | 35.6% |         | 35.6% | 35.6% |      | 16.7% | 52.2% |      | 35.6% | 35.6% |      |
| Yellow Time (s)         | 3.0          | 3.0   |         | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0          | 1.0   |         | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    | 0.0          | 0.0   |         |       | 0.0   |      | 0.0   | 0.0   |      |       | 0.0   |      |
| Total Lost Time (s)     | 4.0          | 4.0   |         |       | 4.0   |      | 4.0   | 4.0   |      |       | 4.0   |      |
| Lead/Lag                |              |       |         |       |       |      | Lag   |       |      | Lead  | Lead  |      |
| Lead-Lag Optimize?      |              |       |         |       |       |      |       |       |      |       |       |      |
| Recall Mode             | None         | None  |         | None  | None  |      | None  | C-Min |      | C-Min | C-Min |      |
| Act Effct Green (s)     | 24.6         | 24.6  |         |       | 24.6  |      | 8.0   | 52.2  |      |       | 41.7  |      |
| Actuated g/C Ratio      | 0.27         | 0.27  |         |       | 0.27  |      | 0.09  | 0.58  |      |       | 0.46  |      |
| v/c Ratio               | 0.25         | 0.68  |         |       | 0.88  |      | 0.69  | 0.69  |      |       | 0.39  |      |
| Control Delay           | 29.6         | 38.5  |         |       | 49.5  |      | 54.5  | 16.1  |      |       | 22.6  |      |
| Queue Delay             | 0.0          | 0.0   |         |       | 0.0   |      | 0.0   | 0.1   |      |       | 0.0   |      |
| Total Delay             | 29.6         | 38.5  |         |       | 49.5  |      | 54.5  | 16.2  |      |       | 22.6  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10   |
|-------------------------|------|-------|
| Lane Configurations     |      |       |
| Traffic Volume (vph)    |      |       |
| Future Volume (vph)     |      |       |
| Ideal Flow (vphpl)      |      |       |
| Grade (%)               |      |       |
| Storage Length (ft)     |      |       |
| Storage Lanes           |      |       |
| Taper Length (ft)       |      |       |
| Lane Util. Factor       |      |       |
| Ped Bike Factor         |      |       |
| Frt                     |      |       |
| Flt Protected           |      |       |
| Satd. Flow (prot)       |      |       |
| Flt Permitted           |      |       |
| Satd. Flow (perm)       |      |       |
|                         |      |       |
| Right Turn on Red       |      |       |
| Satd. Flow (RTOR)       |      |       |
| Link Speed (mph)        |      |       |
| Link Distance (ft)      |      |       |
| Travel Time (s)         |      |       |
| Confl. Peds. (#/hr)     |      |       |
| Confl. Bikes (#/hr)     |      |       |
| Peak Hour Factor        |      |       |
| Heavy Vehicles (%)      |      |       |
| Adj. Flow (vph)         |      |       |
| Shared Lane Traffic (%) |      |       |
| Lane Group Flow (vph)   |      |       |
| Turn Type               |      |       |
| Protected Phases        | 9    | 10    |
| Permitted Phases        |      |       |
| Detector Phase          |      |       |
| Switch Phase            |      |       |
| Minimum Initial (s)     | 2.0  | 2.0   |
| Minimum Split (s)       | 7.0  | 4.0   |
| Total Split (s)         | 7.0  | 4.0   |
| Total Split (%)         | 8%   | 4%    |
| Yellow Time (s)         | 2.0  | 2.0   |
| All-Red Time (s)        | 0.0  | 0.0   |
| Lost Time Adjust (s)    |      |       |
| Total Lost Time (s)     |      |       |
| Lead/Lag                |      |       |
| Lead-Lag Optimize?      |      |       |
| Recall Mode             | None | None  |
| Act Effct Green (s)     | NONC | TIONC |
| Actuated g/C Ratio      |      |       |
| v/c Ratio               |      |       |
| Control Delay           |      |       |
| Queue Delay             |      |       |
|                         |      |       |
| Total Delay             |      |       |

Lanes, Volumes, Timings SLR

#### New Haven Two-Way Study 1: Church Street & Chapel Street

|                               | ۶             | -        | $\mathbf{r}$ | 4          | ←          | •          | 1    | t    | ۲   | 1   | ţ    | ~   |
|-------------------------------|---------------|----------|--------------|------------|------------|------------|------|------|-----|-----|------|-----|
| Lane Group                    | EBL           | EBT      | EBR          | WBL        | WBT        | WBR        | NBL  | NBT  | NBR | SBL | SBT  | SBF |
| LOS                           | С             | D        |              |            | D          |            | D    | В    |     |     | С    |     |
| Approach Delay                |               | 37.6     |              |            | 49.5       |            |      | 21.4 |     |     | 22.6 |     |
| Approach LOS                  |               | D        |              |            | D          |            |      | С    |     |     | С    |     |
| Stops (vph)                   | 21            | 178      |              |            | 379        |            | 74   | 372  |     |     | 160  |     |
| Fuel Used(gal)                | 0             | 3        |              |            | 7          |            | 1    | 5    |     |     | 3    |     |
| CO Emissions (g/hr)           | 22            | 211      |              |            | 513        |            | 101  | 359  |     |     | 178  |     |
| NOx Emissions (g/hr)          | 4             | 41       |              |            | 100        |            | 20   | 70   |     |     | 35   |     |
| VOC Emissions (g/hr)          | 5             | 49       |              |            | 119        |            | 23   | 83   |     |     | 41   |     |
| Dilemma Vehicles (#)          | 0             | 0        |              |            | 0          |            | 0    | 0    |     |     | 0    |     |
| Queue Length 50th (ft)        | 14            | 129      |              |            | 128        |            | 52   | 317  |     |     | 102  |     |
| Queue Length 95th (ft)        | 33            | 174      |              |            | #198       |            | m68  | #420 |     |     | 188  |     |
| Internal Link Dist (ft)       |               | 333      |              |            | 396        |            |      | 442  |     |     | 396  |     |
| Turn Bay Length (ft)          | 50            |          |              |            |            |            | 75   |      |     |     |      |     |
| Base Capacity (vph)           | 145           | 434      |              |            | 601        |            | 170  | 792  |     |     | 620  |     |
| Starvation Cap Reductn        | 0             | 0        |              |            | 0          |            | 0    | 17   |     |     | 0    |     |
| Spillback Cap Reductn         | 0             | 0        |              |            | 0          |            | 0    | 0    |     |     | 0    |     |
| Storage Cap Reductn           | 0             | 0        |              |            | 0          |            | 0    | 0    |     |     | 0    |     |
| Reduced v/c Ratio             | 0.22          | 0.60     |              |            | 0.77       |            | 0.50 | 0.70 |     |     | 0.39 |     |
| Intersection Summary          |               |          |              |            |            |            |      |      |     |     |      |     |
| 51                            | CBD           |          |              |            |            |            |      |      |     |     |      |     |
| Cycle Length: 90              |               |          |              |            |            |            |      |      |     |     |      |     |
| Actuated Cycle Length: 90     |               |          |              |            |            |            |      |      |     |     |      |     |
| Offset: 4 (4%), Referenced    | to phase 4:   | NBT and  | 8:SBTL,      | Start of \ | Yellow     |            |      |      |     |     |      |     |
| Natural Cycle: 75             |               |          |              |            |            |            |      |      |     |     |      |     |
| Control Type: Actuated-Coc    | ordinated     |          |              |            |            |            |      |      |     |     |      |     |
| Maximum v/c Ratio: 0.88       |               |          |              |            |            |            |      |      |     |     |      |     |
| Intersection Signal Delay: 3  |               |          |              |            | tersectior |            | _    |      |     |     |      |     |
| Intersection Capacity Utiliza | ation /6.0%   |          |              | IC         | U Level    | of Service | D    |      |     |     |      |     |
| Analysis Period (min) 15      |               |          |              |            |            |            |      |      |     |     |      |     |
| # 95th percentile volume      |               |          | ieue may     | be longe   | er.        |            |      |      |     |     |      |     |
| Queue shown is maximu         |               | ,        |              |            |            |            |      |      |     |     |      |     |
| n Volume for 95th percer      | ntile queue i | s metere | d by upst    | ream sigi  | nal.       |            |      |      |     |     |      |     |

m Volume for 95th percentile queue is metered by upstream signal.

#### Splits and Phases: 1: Church Street & Chapel Street

| ₩ø9 | ₩<br>Ø2                | <u>.</u> | Ø10 Ø4 (R) | •           |
|-----|------------------------|----------|------------|-------------|
| 7 s | 32 s                   | 4 s      | 47 s       |             |
|     | <b>↓</b> <sub>Ø6</sub> |          | Ø8 (R)     | <b>▲</b> Ø7 |
|     | 32 s                   |          | 32 s       | 15 s        |

### New Haven Two-Way Study 3: College Street & Chapel Street

|                         | ٦     | +     | $\mathbf{r}$ | 4        | Ŧ     | •    | •    | †    | 1    | 1     | Ŧ     | ~    |
|-------------------------|-------|-------|--------------|----------|-------|------|------|------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR          | WBL      | WBT   | WBR  | NBL  | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | 4     |              | <u>۲</u> | ef 👘  |      |      |      |      |       | \$    |      |
| Traffic Volume (vph)    | 20    | 160   | 25           | 40       | 310   | 55   | 0    | 0    | 0    | 35    | 210   | 65   |
| Future Volume (vph)     | 20    | 160   | 25           | 40       | 310   | 55   | 0    | 0    | 0    | 35    | 210   | 65   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900     | 1900  | 1900 | 1900 | 1900 | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               |       | -4%   |              |          | 5%    |      |      | -8%  |      |       | 4%    |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00     | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.95  |              | 0.83     | 0.96  |      |      |      |      |       | 0.91  |      |
| Frt                     |       | 0.984 |              |          | 0.977 |      |      |      |      |       | 0.972 |      |
| Flt Protected           |       | 0.995 |              | 0.950    |       |      |      |      |      |       | 0.994 |      |
| Satd. Flow (prot)       | 0     | 1561  | 0            | 1458     | 1352  | 0    | 0    | 0    | 0    | 0     | 1425  | 0    |
| Flt Permitted           |       | 0.949 |              | 0.621    |       |      |      |      |      |       | 0.994 |      |
| Satd. Flow (perm)       | 0     | 1473  | 0            | 794      | 1352  | 0    | 0    | 0    | 0    | 0     | 1382  | 0    |
| Right Turn on Red       |       |       | No           |          |       | No   |      |      | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |              |          |       |      |      |      |      |       |       |      |
| Link Speed (mph)        |       | 25    |              |          | 25    |      |      | 25   |      |       | 25    |      |
| Link Distance (ft)      |       | 502   |              |          | 519   |      |      | 547  |      |       | 897   |      |
| Travel Time (s)         |       | 13.7  |              |          | 14.2  |      |      | 14.9 |      |       | 24.5  |      |
| Confl. Peds. (#/hr)     | 118   |       | 118          | 118      |       | 118  |      |      |      | 118   |       | 121  |
| Confl. Bikes (#/hr)     |       |       | 10           |          |       | 10   |      |      |      |       |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92         | 0.88     | 0.88  | 0.88 | 0.92 | 0.92 | 0.92 | 0.94  | 0.94  | 0.94 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%           | 5%       | 11%   | 13%  | 2%   | 2%   | 2%   | 2%    | 3%    | 3%   |
| Adj. Flow (vph)         | 22    | 174   | 27           | 45       | 352   | 63   | 0    | 0    | 0    | 37    | 223   | 69   |
| Shared Lane Traffic (%) |       |       |              |          |       |      |      |      |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 223   | 0            | 45       | 415   | 0    | 0    | 0    | 0    | 0     | 329   | 0    |
| Turn Type               | Perm  | NA    |              | Perm     | NA    |      |      |      |      | Perm  | NA    |      |
| Protected Phases        |       | 6     |              |          | 2     |      |      |      |      |       | 8     |      |
| Permitted Phases        | 6     |       |              | 2        |       |      |      |      |      | 8     |       |      |
| Detector Phase          | 6     | 6     |              | 2        | 2     |      |      |      |      | 8     | 8     |      |
| Switch Phase            |       |       |              |          |       |      |      |      |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |              | 7.0      | 7.0   |      |      |      |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |              | 17.0     | 17.0  |      |      |      |      | 17.0  | 17.0  |      |
| Total Split (s)         | 26.0  | 26.0  |              | 26.0     | 26.0  |      |      |      |      | 26.0  | 26.0  |      |
| Total Split (%)         | 43.3% | 43.3% |              | 43.3%    | 43.3% |      |      |      |      | 43.3% | 43.3% |      |
| Yellow Time (s)         | 3.0   | 3.0   |              | 3.0      | 3.0   |      |      |      |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |              | 1.0      | 1.0   |      |      |      |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |              | 0.0      | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |              | 4.0      | 4.0   |      |      |      |      |       | 4.0   |      |
| Lead/Lag                |       |       |              |          |       |      |      |      |      |       |       |      |
| Lead-Lag Optimize?      |       |       |              |          |       |      |      |      |      |       |       |      |
| Recall Mode             | C-Min | C-Min |              | C-Min    | C-Min |      |      |      |      | None  | None  |      |
| Act Effct Green (s)     |       | 27.3  |              | 27.3     | 27.3  |      |      |      |      |       | 18.3  |      |
| Actuated g/C Ratio      |       | 0.46  |              | 0.46     | 0.46  |      |      |      |      |       | 0.30  |      |
| v/c Ratio               |       | 0.33  |              | 0.12     | 0.67  |      |      |      |      |       | 0.78  |      |
| Control Delay           |       | 14.7  |              | 13.6     | 23.8  |      |      |      |      |       | 32.2  |      |
| Queue Delay             |       | 0.0   |              | 0.0      | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Delay             |       | 14.7  |              | 13.6     | 23.8  |      |      |      |      |       | 32.2  |      |
| LOS                     |       | B     |              | B        | C     |      |      |      |      |       | C     |      |
| Approach Delay          |       | 14.7  |              | 5        | 22.8  |      |      |      |      |       | 32.2  |      |
| Approach LOS            |       | B     |              |          | C     |      |      |      |      |       | C     |      |
|                         |       | U     |              |          | 0     |      |      |      |      |       | 0     |      |

Lanes, Volumes, Timings SLR

| Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Grade (%) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 2.0 2.0 Minimum Split (s) At.0 At.0 Total Split (s) Total Split (s) Control Delay Queue Delay Total Delay LOS Approach Delay                                                                                                                                                                                                                                                                                                                                                      | Lane Group            | Ø9    | Ø10  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|------|
| Traffic Volume (vph)         Future Volume (vph)         Ideal Flow (vphpl)         Grade (%)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Flt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Stift (%)       4.0         Total Split (%)       7%         Yellow Time (s)       2.0         Lane Group (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       7%         Yellow Time (s)       2.0         Lost Time (s)       2.0 |                       |       |      |
| Future Volume (vph)         Ideal Flow (vphpl)         Grade (%)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Filt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Suit (s)       7.0         Total Split (s)       4.0         Total Split (s)       0.0         Itaed Lost Time (s)       2.0         Laed/Lag       2.0         Lead/Lag       2.0         Lane Group Flow (vph)       7%         Turn Type       7%         Protected Phases       9         Detector Phase            |                       |       |      |
| Ideal Flow (vphpl)Grade (%)Lane Util. FactorPed Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)4.04.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)2.0All-Red Time (s)2.0All-Red Time (s)2.0Act atioControl DelayQueue DelayTotal DelayLOSApproach DelayVork RatioControl DelayControl DelayConton Delay<                                                                                                                                                               |                       |       |      |
| Grade (%)<br>Lane Util. Factor<br>Ped Bike Factor<br>Frt<br>Fit Protected<br>Satd. Flow (prot)<br>Fit Permitted<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (perm)<br>Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>2.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>Actuated g/C Ratio<br>V/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                         |                       |       |      |
| Lane Util. FactorPed Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (perm)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |      |
| Ped Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)Adl. Split (%)Adl-Red Time (s)Cotal Lost Time (s)Cotal Lost Time (s)Lead-Lag Optimize?Recall ModeActuated g/C RatioV/c RatioControl DelayOueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |      |
| FrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)All-Red Time (s)Cotal Lost Time (s)Cotal Lost Time (s)Cad/LagLead-Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayOueue DelayTotal DelayLoSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Flt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (s)Ad.All-Red Time (s)Cond Lost Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagControl DelayQueue DelayTotal DelayLOSApproach DelayVor RatioControl DelayDetector DelayDetector DelayDosApproach DelayDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.02.02.03.03.03.03.03.03.03.                                                                                                                                                                                                                                               |                       |       |      |
| Satd. Flow (prot)Fit PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0ZolMinimum Split (s)4.0Total Split (%)7%Yellow Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLost Time (s)Actuated g/C Ratiov/c RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                            |                       |       |      |
| Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Xold Split (s)4.04.0Total Split (%)2.0Adl-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Satd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (s)4.0Total Split (%)7%Yellow Time (s)Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayLOSApproach DelayVersite PalaeSolon Date Split SolonSolon Date SolonSolon DelaySolon Delay<                                                                                                                                   |                       |       |      |
| Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Total Split (s)4.04.0Total Split (s)Time (s)Lang Time (s)Lang Coup Time (s)Lang Coup CoupAdj. Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Split (s)4.0Total Split (s)7%Yellow Time (s)2.02.0All-Red Time (s)Lead/LagLead-Lag Optimize?Recall ModeActuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Satd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Z.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.0Lead/LagLead/LagLead/LagLead/Lag (CratioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayVersite PalaesProtect Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>2.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>Z.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |      |
| Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zotal Split (s)4.0Total Split (s)4.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)Lead/LagLead/LagLead/LagLead/Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |      |
| Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Zotal Split (s)4.0Total Split (s)4.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)Lead/LagLead/LagLead/Lag (charter (s))Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( )                   |       |      |
| Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesPermitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zotal Split (s)4.0Total Split (s)4.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)0.0Lead/LagLead/LagLead-Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| Heavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesPermitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Z.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)Lead/LagLead/LagLead/Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected Phases9Poremitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.04.0Total Split (s)4.04.07%Yellow Time (s)2.02.02.0All-Red Time (s)0.0Lead/LagLead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |      |
| Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       |      |
| Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Turn TypeProtected Phases910Permitted Phases0Detector Phase5Switch Phase2.02.0Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)2.02.0All-Red Time (s)2.02.0Lead-Lag Cptimize?0.00.0Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl Delay00.0LOSApproach Delay0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Protected Phases910Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneActuated g/C RatioV/c RatioV/c RatioV/c RatioControl DelayUeue DelayQueue DelayTotal DelayLOSApproach DelayVin Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Group Flow (vph) |       |      |
| Protected Phases910Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneActuated g/C RatioV/c RatioV/c RatioV/c RatioControl DelayUeue DelayQueue DelayTotal DelayLOSApproach DelayVin Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| Detector Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (%) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 9     | 10   |
| Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Permitted Phases      |       |      |
| Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)0.00.0Total Lost Time (s)2.02.0Lead/Lag2.02.0Lead-Lag Optimize?2.0Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl DelayQueue Delay1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |       |      |
| Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 2.0   | 2.0  |
| Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Qptimize?Lead-Lag Optimize?Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yellow Time (s)       |       |      |
| Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |      |
| Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 0.0   | 0.0  |
| Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |       |      |
| Recall ModeNoneNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |      |
| Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | Nono  | Nono |
| Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | NOLIG | None |
| v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |      |
| Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |       |      |
| Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |      |
| Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |       |      |
| , pp. 53001 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approach LOS          |       |      |

Lanes, Volumes, Timings SLR

### New Haven Two-Way Study 3: College Street & Chapel Street

|                               | ۶           | -          | $\mathbf{r}$ | ∢           | -          | •          | 1   | 1   | 1   | 1   | Ļ    | ~   |
|-------------------------------|-------------|------------|--------------|-------------|------------|------------|-----|-----|-----|-----|------|-----|
| Lane Group                    | EBL         | EBT        | EBR          | WBL         | WBT        | WBR        | NBL | NBT | NBR | SBL | SBT  | SBF |
| Stops (vph)                   |             | 145        |              | 28          | 270        |            |     |     |     |     | 267  |     |
| Fuel Used(gal)                |             | 2          |              | 0           | 4          |            |     |     |     |     | 5    |     |
| CO Emissions (g/hr)           |             | 143        |              | 28          | 309        |            |     |     |     |     | 378  |     |
| NOx Emissions (g/hr)          |             | 28         |              | 5           | 60         |            |     |     |     |     | 74   |     |
| VOC Emissions (g/hr)          |             | 33         |              | 6           | 72         |            |     |     |     |     | 88   |     |
| Dilemma Vehicles (#)          |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Queue Length 50th (ft)        |             | 49         |              | 10          | 122        |            |     |     |     |     | 104  |     |
| Queue Length 95th (ft)        |             | 122        |              | 30          | #269       |            |     |     |     |     | 177  |     |
| Internal Link Dist (ft)       |             | 422        |              |             | 439        |            |     | 467 |     |     | 817  |     |
| Turn Bay Length (ft)          |             |            |              |             |            |            |     |     |     |     |      |     |
| Base Capacity (vph)           |             | 670        |              | 361         | 615        |            |     |     |     |     | 506  |     |
| Starvation Cap Reductn        |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Spillback Cap Reductn         |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Storage Cap Reductn           |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Reduced v/c Ratio             |             | 0.33       |              | 0.12        | 0.67       |            |     |     |     |     | 0.65 |     |
| Intersection Summary          |             |            |              |             |            |            |     |     |     |     |      |     |
| Area Type: (                  | CBD         |            |              |             |            |            |     |     |     |     |      |     |
| Cycle Length: 60              |             |            |              |             |            |            |     |     |     |     |      |     |
| Actuated Cycle Length: 60     |             |            |              |             |            |            |     |     |     |     |      |     |
| Offset: 0 (0%), Referenced t  | o phase 2:  | NBTL an    | d 6:EBTI     | _, Start of | Yellow     |            |     |     |     |     |      |     |
| Natural Cycle: 60             |             |            |              |             |            |            |     |     |     |     |      |     |
| Control Type: Actuated-Coo    | rdinated    |            |              |             |            |            |     |     |     |     |      |     |
| Maximum v/c Ratio: 0.78       |             |            |              |             |            |            |     |     |     |     |      |     |
| Intersection Signal Delay: 24 | 4.0         |            |              | In          | tersectior | n LOS: C   |     |     |     |     |      |     |
| Intersection Capacity Utiliza | tion 57.5%  |            |              | IC          | U Level o  | of Service | B   |     |     |     |      |     |
| Analysis Period (min) 15      |             |            |              |             |            |            |     |     |     |     |      |     |
| # 95th percentile volume e    | exceeds cap | bacity, qu | leue may     | be longe    | er.        |            |     |     |     |     |      |     |
| Queue shown is maximu         | m after two | cycles.    |              |             |            |            |     |     |     |     |      |     |
|                               |             |            |              |             |            |            |     |     |     |     |      |     |

Splits and Phases: 3: College Street & Chapel Street



#### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                         | ≯     | +     | *    | 4     | +     | •     | •     | 1     | 1    | 1    | Ŧ    | ~    |
|-------------------------|-------|-------|------|-------|-------|-------|-------|-------|------|------|------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations     |       | \$    |      |       | र्स   | *     |       | 4î b  |      |      |      |      |
| Traffic Volume (vph)    | 50    | 250   | 25   | 25    | 270   | 90    | 125   | 235   | 50   | 0    | 0    | 0    |
| Future Volume (vph)     | 50    | 250   | 25   | 25    | 270   | 90    | 125   | 235   | 50   | 0    | 0    | 0    |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  | 1900  | 1900  | 1900 | 1900 | 1900 | 1900 |
| Grade (%)               |       | -5%   |      |       | -4%   |       |       | -10%  |      |      | 5%   |      |
| Storage Length (ft)     | 50    |       | 0    | 50    |       | 100   | 125   |       | 0    | 0    |      | 0    |
| Storage Lanes           | 0     |       | 0    | 0     |       | 1     | 1     |       | 0    | 0    |      | 0    |
| Taper Length (ft)       | 25    |       |      | 25    |       |       | 25    |       |      | 25   |      |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  | 0.95  | 0.95  | 0.95 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor         |       | 0.97  |      |       | 0.98  | 0.75  |       | 0.90  |      |      |      |      |
| Frt                     |       | 0.990 |      |       |       | 0.850 |       | 0.982 |      |      |      |      |
| Flt Protected           |       | 0.992 |      |       | 0.996 |       |       | 0.985 |      |      |      |      |
| Satd. Flow (prot)       | 0     | 1599  | 0    | 0     | 1589  | 1352  | 0     | 2846  | 0    | 0    | 0    | 0    |
| Flt Permitted           | Ŭ     | 0.869 | Ű    | Ű     | 0.959 | 1002  | Ű     | 0.985 | Ű    | Ŭ    | Ŭ    | Ŭ    |
| Satd. Flow (perm)       | 0     | 1384  | 0    | 0     | 1507  | 1020  | 0     | 2638  | 0    | 0    | 0    | 0    |
| Right Turn on Red       | •     |       | No   | •     |       | No    | Ū     |       | No   | ,    | •    | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |       |       |       |      |      |      |      |
| Link Speed (mph)        |       | 25    |      |       | 25    |       |       | 25    |      |      | 25   |      |
| Link Distance (ft)      |       | 413   |      |       | 498   |       |       | 404   |      |      | 482  |      |
| Travel Time (s)         |       | 11.3  |      |       | 13.6  |       |       | 11.0  |      |      | 13.1 |      |
| Confl. Peds. (#/hr)     | 112   | 11.0  | 112  | 183   | 10.0  | 183   | 112   | 11.0  | 112  |      | 10.1 |      |
| Confl. Bikes (#/hr)     | 112   |       | 10   | 100   |       | 10    | 112   |       | 10   |      |      | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.87  | 0.87  | 0.87  | 0.90  | 0.90  | 0.90 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%   | 2%    | 6%    | 6%    | 10%   | 9%    | 2%   | 2%   | 2%   | 2%   |
| Adj. Flow (vph)         | 54    | 272   | 27   | 29    | 310   | 103   | 139   | 261   | 56   | 0    | 0    | 0    |
| Shared Lane Traffic (%) | 0,    |       |      | 20    | 010   | 100   | 100   | 201   | 00   | Ŭ    | Ŭ    | Ŭ    |
| Lane Group Flow (vph)   | 0     | 353   | 0    | 0     | 339   | 103   | 0     | 456   | 0    | 0    | 0    | 0    |
| Turn Type               | Perm  | NA    | •    | Perm  | NA    | Perm  | Split | NA    | , T  | •    | •    |      |
| Protected Phases        |       | 6     |      |       | 2     |       | 4     | 4     |      |      |      |      |
| Permitted Phases        | 6     |       |      | 2     |       | 2     |       |       |      |      |      |      |
| Detector Phase          | 6     | 6     |      | 2     | 2     | 2     | 4     | 4     |      |      |      |      |
| Switch Phase            |       |       |      |       |       |       |       |       |      |      |      |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   |      |      |      |      |
| Minimum Split (s)       | 18.0  | 18.0  |      | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  |      |      |      |      |
| Total Split (s)         | 29.0  | 29.0  |      | 29.0  | 29.0  | 29.0  | 23.0  | 23.0  |      |      |      |      |
| Total Split (%)         | 48.3% | 48.3% |      | 48.3% | 48.3% | 48.3% | 38.3% | 38.3% |      |      |      |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |      |      |      |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |      |      |      |      |
| Lost Time Adjust (s)    |       | 0.0   |      |       | 0.0   | 0.0   |       | 0.0   |      |      |      |      |
| Total Lost Time (s)     |       | 4.0   |      |       | 4.0   | 4.0   |       | 4.0   |      |      |      |      |
| Lead/Lag                |       |       |      |       |       |       |       |       |      |      |      |      |
| Lead-Lag Optimize?      |       |       |      |       |       |       |       |       |      |      |      |      |
| Recall Mode             | None  | None  |      | None  | None  | None  | C-Min | C-Min |      |      |      |      |
| Act Effct Green (s)     |       | 19.4  |      |       | 19.4  | 19.4  |       | 29.4  |      |      |      |      |
| Actuated g/C Ratio      |       | 0.32  |      |       | 0.32  | 0.32  |       | 0.49  |      |      |      |      |
| v/c Ratio               |       | 0.79  |      |       | 0.70  | 0.31  |       | 0.33  |      |      |      |      |
| Control Delay           |       | 31.2  |      |       | 25.0  | 16.3  |       | 12.6  |      |      |      |      |
| Queue Delay             |       | 0.0   |      |       | 0.0   | 0.0   |       | 0.0   |      |      |      |      |
| Total Delay             |       | 31.2  |      |       | 25.0  | 16.3  |       | 12.6  |      |      |      |      |
|                         |       |       |      |       |       |       |       |       |      |      |      |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9         | Ø10  |
|-------------------------|------------|------|
| Lane Configurations     |            |      |
| Traffic Volume (vph)    |            |      |
| Future Volume (vph)     |            |      |
| Ideal Flow (vphpl)      |            |      |
| Grade (%)               |            |      |
| Storage Length (ft)     |            |      |
| Storage Lanes           |            |      |
| Taper Length (ft)       |            |      |
| Lane Util. Factor       |            |      |
| Ped Bike Factor         |            |      |
|                         |            |      |
| Frt<br>Flt Drotoctod    |            |      |
| Fit Protected           |            |      |
| Satd. Flow (prot)       |            |      |
| Flt Permitted           |            |      |
| Satd. Flow (perm)       |            |      |
| Right Turn on Red       |            |      |
| Satd. Flow (RTOR)       |            |      |
| Link Speed (mph)        |            |      |
| Link Distance (ft)      |            |      |
| Travel Time (s)         |            |      |
| Confl. Peds. (#/hr)     |            |      |
| Confl. Bikes (#/hr)     |            |      |
| Peak Hour Factor        |            |      |
| Heavy Vehicles (%)      |            |      |
| Adj. Flow (vph)         |            |      |
| Shared Lane Traffic (%) |            |      |
| Lane Group Flow (vph)   |            |      |
| Turn Type               |            |      |
| Protected Phases        | 9          | 10   |
| Permitted Phases        | -          |      |
| Detector Phase          |            |      |
| Switch Phase            |            |      |
| Minimum Initial (s)     | 2.0        | 2.0  |
| Minimum Split (s)       | 4.0        | 4.0  |
|                         | 4.0<br>4.0 | 4.0  |
| Total Split (s)         |            |      |
| Total Split (%)         | 7%         | 7%   |
| Yellow Time (s)         | 2.0        | 2.0  |
| All-Red Time (s)        | 0.0        | 0.0  |
| Lost Time Adjust (s)    |            |      |
| Total Lost Time (s)     |            |      |
| Lead/Lag                |            |      |
| Lead-Lag Optimize?      |            |      |
| Recall Mode             | None       | None |
| Act Effct Green (s)     |            |      |
| Actuated g/C Ratio      |            |      |
| v/c Ratio               |            |      |
| Control Delay           |            |      |
| Queue Delay             |            |      |
| Total Delay             |            |      |
|                         |            |      |

#### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                               | ۶           | -       | $\mathbf{F}$ | •     | +          | *          | •   | 1    | 1   | >   | Ļ   | ~   |
|-------------------------------|-------------|---------|--------------|-------|------------|------------|-----|------|-----|-----|-----|-----|
| Lane Group                    | EBL         | EBT     | EBR          | WBL   | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT | SBR |
| LOS                           |             | С       |              |       | С          | В          |     | В    |     |     |     |     |
| Approach Delay                |             | 31.2    |              |       | 23.0       |            |     | 12.6 |     |     |     |     |
| Approach LOS                  |             | С       |              |       | С          |            |     | В    |     |     |     |     |
| Stops (vph)                   |             | 279     |              |       | 239        | 60         |     | 254  |     |     |     |     |
| Fuel Used(gal)                |             | 4       |              |       | 4          | 1          |     | 3    |     |     |     |     |
| CO Emissions (g/hr)           |             | 299     |              |       | 257        | 64         |     | 240  |     |     |     |     |
| NOx Emissions (g/hr)          |             | 58      |              |       | 50         | 12         |     | 47   |     |     |     |     |
| VOC Emissions (g/hr)          |             | 69      |              |       | 59         | 15         |     | 56   |     |     |     |     |
| Dilemma Vehicles (#)          |             | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Queue Length 50th (ft)        |             | 112     |              |       | 103        | 27         |     | 43   |     |     |     |     |
| Queue Length 95th (ft)        |             | 175     |              |       | 151        | 51         |     | 108  |     |     |     |     |
| Internal Link Dist (ft)       |             | 333     |              |       | 418        |            |     | 324  |     |     | 402 |     |
| Turn Bay Length (ft)          |             |         |              |       |            | 100        |     |      |     |     |     |     |
| Base Capacity (vph)           |             | 576     |              |       | 627        | 425        |     | 1395 |     |     |     |     |
| Starvation Cap Reductn        |             | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Spillback Cap Reductn         |             | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Storage Cap Reductn           |             | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Reduced v/c Ratio             |             | 0.61    |              |       | 0.54       | 0.24       |     | 0.33 |     |     |     |     |
| Intersection Summary          |             |         |              |       |            |            |     |      |     |     |     |     |
| )                             | CBD         |         |              |       |            |            |     |      |     |     |     |     |
| Cycle Length: 60              |             |         |              |       |            |            |     |      |     |     |     |     |
| Actuated Cycle Length: 60     |             |         |              |       |            |            |     |      |     |     |     |     |
| Offset: 50 (83%), Reference   | ed to phase | 4:NBTL, | Start of Ye  | ellow |            |            |     |      |     |     |     |     |
| Natural Cycle: 45             |             |         |              |       |            |            |     |      |     |     |     |     |
| Control Type: Actuated-Coo    | ordinated   |         |              |       |            |            |     |      |     |     |     |     |
| Maximum v/c Ratio: 0.79       |             |         |              |       |            |            |     |      |     |     |     |     |
| Intersection Signal Delay: 2  |             |         |              |       | tersection |            |     |      |     |     |     |     |
| Intersection Capacity Utiliza | tion 61.0%  |         |              | IC    | CU Level c | of Service | В   |      |     |     |     |     |
| Analysis Period (min) 15      |             |         |              |       |            |            |     |      |     |     |     |     |

Splits and Phases: 11: Church Street/Whitney Avenue & Grove Street

| <b>.</b> | Ø9 |             |   | ₩ø1 | 0 ★ Ø4 (R) |  |
|----------|----|-------------|---|-----|------------|--|
| 4s       |    | 29 s        | 4 | s   | 23 s       |  |
|          |    | <u>⊅</u> ⊉6 |   |     |            |  |
|          |    | 29 s        |   |     |            |  |

| Lane Group              | Ø9 | ð10 |  |
|-------------------------|----|-----|--|
| LOS                     |    |     |  |
| Approach Delay          |    |     |  |
| Approach LOS            |    |     |  |
| Stops (vph)             |    |     |  |
| Fuel Used(gal)          |    |     |  |
| CO Emissions (g/hr)     |    |     |  |
| NOx Emissions (g/hr)    |    |     |  |
| VOC Emissions (g/hr)    |    |     |  |
| Dilemma Vehicles (#)    |    |     |  |
| Queue Length 50th (ft)  |    |     |  |
| Queue Length 95th (ft)  |    |     |  |
| Internal Link Dist (ft) |    |     |  |
| Turn Bay Length (ft)    |    |     |  |
| Base Capacity (vph)     |    |     |  |
| Starvation Cap Reductn  |    |     |  |
| Spillback Cap Reductn   |    |     |  |
| Storage Cap Reductn     |    |     |  |
| Reduced v/c Ratio       |    |     |  |
| Intersection Summary    |    |     |  |

### New Haven Two-Way Study 18: Park Street & Chapel Street

|                                | ۶          | →    | $\mathbf{\hat{v}}$ | 4    | +       | *          | ٩.   | Ť    | ۲    | 1    | ŧ     | ~    |
|--------------------------------|------------|------|--------------------|------|---------|------------|------|------|------|------|-------|------|
| Lane Group                     | EBL        | EBT  | EBR                | WBL  | WBT     | WBR        | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations            |            |      |                    |      | र्स     |            |      |      |      |      | - ↔   |      |
| Traffic Volume (vph)           | 0          | 0    | 0                  | 50   | 285     | 0          | 0    | 0    | 0    | 25   | 215   | 60   |
| Future Volume (vph)            | 0          | 0    | 0                  | 50   | 285     | 0          | 0    | 0    | 0    | 25   | 215   | 60   |
| Ideal Flow (vphpl)             | 1900       | 1900 | 1900               | 1900 | 1900    | 1900       | 1900 | 1900 | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor              | 1.00       | 1.00 | 1.00               | 1.00 | 1.00    | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor                |            |      |                    |      |         |            |      |      |      |      |       |      |
| Frt                            |            |      |                    |      |         |            |      |      |      |      | 0.973 |      |
| Flt Protected                  |            |      |                    |      | 0.993   |            |      |      |      |      | 0.996 |      |
| Satd. Flow (prot)              | 0          | 0    | 0                  | 0    | 1744    | 0          | 0    | 0    | 0    | 0    | 1738  | 0    |
| Flt Permitted                  |            |      |                    |      | 0.993   |            |      |      |      |      | 0.996 |      |
| Satd. Flow (perm)              | 0          | 0    | 0                  | 0    | 1744    | 0          | 0    | 0    | 0    | 0    | 1738  | 0    |
| Link Speed (mph)               |            | 25   |                    |      | 25      |            |      | 25   |      |      | 25    |      |
| Link Distance (ft)             |            | 552  |                    |      | 511     |            |      | 389  |      |      | 432   |      |
| Travel Time (s)                |            | 15.1 |                    |      | 13.9    |            |      | 10.6 |      |      | 11.8  |      |
| Confl. Peds. (#/hr)            |            |      |                    | 41   |         |            |      |      |      | 18   |       | 18   |
| Confl. Bikes (#/hr)            |            |      |                    |      |         | 10         |      |      |      |      |       | 10   |
| Peak Hour Factor               | 0.92       | 0.92 | 0.92               | 0.85 | 0.85    | 0.85       | 0.92 | 0.92 | 0.92 | 0.90 | 0.90  | 0.90 |
| Heavy Vehicles (%)             | 2%         | 2%   | 2%                 | 2%   | 5%      | 0%         | 2%   | 2%   | 2%   | 2%   | 2%    | 4%   |
| Adj. Flow (vph)                | 0          | 0    | 0                  | 59   | 335     | 0          | 0    | 0    | 0    | 28   | 239   | 67   |
| Shared Lane Traffic (%)        |            | -    | -                  |      |         |            | -    | -    | -    | -    |       |      |
| Lane Group Flow (vph)          | 0          | 0    | 0                  | 0    | 394     | 0          | 0    | 0    | 0    | 0    | 334   | 0    |
| Sign Control                   |            | Stop |                    |      | Stop    |            |      | Stop |      |      | Stop  |      |
| Intersection Summary           |            |      |                    |      |         |            |      |      |      |      |       |      |
| Area Type: 0                   | Other      |      |                    |      |         |            |      |      |      |      |       |      |
| Control Type: Unsignalized     |            |      |                    |      |         |            |      |      |      |      |       |      |
| Intersection Capacity Utilizat | tion 41.1% |      |                    | IC   | U Level | of Service | A    |      |      |      |       |      |
| Analysis Period (min) 15       |            |      |                    |      |         |            |      |      |      |      |       |      |

| ntersection                                 |      |
|---------------------------------------------|------|
| ntersection Delay, s/veh                    | 12.4 |
| ntersection Delay, s/veh<br>ntersection LOS | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | र्भ  |      |      |      |      |      | 4    |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 50   | 285  | 0    | 0    | 0    | 0    | 25   | 215  | 60   |
| Future Vol, veh/h          | 0    | 0    | 0    | 50   | 285  | 0    | 0    | 0    | 0    | 25   | 215  | 60   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.85 | 0.85 | 0.85 | 0.92 | 0.92 | 0.92 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 5    | 0    | 2    | 2    | 2    | 2    | 2    | 4    |
| Mvmt Flow                  | 0    | 0    | 0    | 59   | 335  | 0    | 0    | 0    | 0    | 28   | 239  | 67   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      |      |      |      | SB   |      |      |
| Opposing Approach          |      |      |      |      |      |      |      |      |      |      |      |      |
| Opposing Lanes             |      |      |      | 0    |      |      |      |      |      | 0    |      |      |
| Conflicting Approach Left  |      |      |      |      |      |      |      |      |      | WB   |      |      |
| Conflicting Lanes Left     |      |      |      | 0    |      |      |      |      |      | 1    |      |      |
| Conflicting Approach Right |      |      |      | SB   |      |      |      |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      |      |      |      | 0    |      |      |
| HCM Control Delay          |      |      |      | 13   |      |      |      |      |      | 11.7 |      |      |
| HCM LOS                    |      |      |      | В    |      |      |      |      |      | В    |      |      |

| Lane                   | WBLn1 | SBLn1 |
|------------------------|-------|-------|
| Vol Left, %            | 15%   | 8%    |
| Vol Thru, %            | 85%   | 72%   |
| Vol Right, %           | 0%    | 20%   |
| Sign Control           | Stop  | Stop  |
| Traffic Vol by Lane    | 335   | 300   |
| LT Vol                 | 50    | 25    |
| Through Vol            | 285   | 215   |
| RT Vol                 | 0     | 60    |
| Lane Flow Rate         | 394   | 333   |
| Geometry Grp           | 1     | 1     |
| Degree of Util (X)     | 0.524 | 0.445 |
| Departure Headway (Hd) | 4.786 | 4.809 |
| Convergence, Y/N       | Yes   | Yes   |
| Сар                    | 749   | 747   |
| Service Time           | 2.839 | 2.86  |
| HCM Lane V/C Ratio     | 0.526 | 0.446 |
| HCM Control Delay      | 13    | 11.7  |
| HCM Lane LOS           | В     | В     |
| HCM 95th-tile Q        | 3.1   | 2.3   |

#### New Haven Two-Way Study 22: York Street & Tower Parkway/Grove Street

| Ļ    | ,                      |
|------|------------------------|
| •    | *                      |
| SBT  | SBR                    |
| 4    |                        |
|      | 15                     |
|      | 15                     |
|      | 1900                   |
|      | 1.00                   |
|      |                        |
|      |                        |
|      |                        |
|      | 0                      |
|      | Ű                      |
|      | 0                      |
| 1520 | No                     |
|      |                        |
| 25   |                        |
|      |                        |
|      |                        |
| 5.0  | 39                     |
|      | 39<br>10               |
| 0.57 | 0.57                   |
|      |                        |
|      | 11%                    |
| 1/5  | 26                     |
| 200  | 0                      |
|      | 0                      |
|      |                        |
| 8    |                        |
| 0    |                        |
| 8    |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      | _                      |
| 4.0  |                        |
|      | _                      |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
|      |                        |
| 0.0  |                        |
|      |                        |
| С    |                        |
| 32.5 |                        |
| С    |                        |
| 145  |                        |
|      | 32.5<br>C<br>32.5<br>C |

Lanes, Volumes, Timings SLR

| Lane Group                             | Ø9   | Ø10  |
|----------------------------------------|------|------|
| Lane Configurations                    |      |      |
| Traffic Volume (vph)                   |      |      |
| Future Volume (vph)                    |      |      |
| Ideal Flow (vphpl)                     |      |      |
| Lane Util. Factor                      |      |      |
| Ped Bike Factor                        |      |      |
| Frt                                    |      |      |
| Flt Protected                          |      |      |
| Satd. Flow (prot)                      |      |      |
| Flt Permitted                          |      |      |
| Satd. Flow (perm)                      |      |      |
| Right Turn on Red                      |      |      |
| Satd. Flow (RTOR)                      |      |      |
|                                        |      |      |
| Link Speed (mph)<br>Link Distance (ft) |      |      |
|                                        |      |      |
| Travel Time (s)                        |      |      |
| Confl. Peds. (#/hr)                    |      |      |
| Confl. Bikes (#/hr)                    |      |      |
| Peak Hour Factor                       |      |      |
| Heavy Vehicles (%)                     |      |      |
| Adj. Flow (vph)                        |      |      |
| Shared Lane Traffic (%)                |      |      |
| Lane Group Flow (vph)                  |      |      |
| Turn Type                              | _    |      |
| Protected Phases                       | 9    | 10   |
| Permitted Phases                       |      |      |
| Detector Phase                         |      |      |
| Switch Phase                           |      |      |
| Minimum Initial (s)                    | 2.0  | 2.0  |
| Minimum Split (s)                      | 4.0  | 4.0  |
| Total Split (s)                        | 4.0  | 4.0  |
| Total Split (%)                        | 7%   | 7%   |
| Yellow Time (s)                        | 2.0  | 2.0  |
| All-Red Time (s)                       | 0.0  | 0.0  |
| Lost Time Adjust (s)                   |      |      |
| Total Lost Time (s)                    |      |      |
| Lead/Lag                               |      |      |
| Lead-Lag Optimize?                     |      |      |
| Recall Mode                            | None | None |
| Act Effct Green (s)                    |      |      |
| Actuated g/C Ratio                     |      |      |
| v/c Ratio                              |      |      |
| Control Delay                          |      |      |
| Queue Delay                            |      |      |
| Total Delay                            |      |      |
| LOS                                    |      |      |
| Approach Delay                         |      |      |
| Approach LOS                           |      |      |
| Stops (vph)                            |      |      |
|                                        |      |      |

Lanes, Volumes, Timings SLR

#### New Haven Two-Way Study 22: York Street & Tower Parkway/Grove Street

|                                | ≯          | +       | *        | 4           | Ļ          | •          | •   | Ť    | 1   | 1   | Ŧ    | ~   |
|--------------------------------|------------|---------|----------|-------------|------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                     | EBL        | EBT     | EBR      | WBL         | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| Fuel Used(gal)                 |            | 4       |          |             | 4          |            |     | 2    |     |     | 2    |     |
| CO Emissions (g/hr)            |            | 304     |          |             | 271        |            |     | 122  |     |     | 136  |     |
| NOx Emissions (g/hr)           |            | 59      |          |             | 53         |            |     | 24   |     |     | 26   |     |
| VOC Emissions (g/hr)           |            | 71      |          |             | 63         |            |     | 28   |     |     | 31   |     |
| Dilemma Vehicles (#)           |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)         |            | 63      |          |             | 54         |            |     | 39   |     |     | 93   |     |
| Queue Length 95th (ft)         |            | 165     |          |             | 145        |            |     | 77   |     |     | 89   |     |
| Internal Link Dist (ft)        |            | 605     |          |             | 317        |            |     | 218  |     |     | 127  |     |
| Turn Bay Length (ft)           |            |         |          |             |            |            |     |      |     |     |      |     |
| Base Capacity (vph)            |            | 941     |          |             | 917        |            |     | 450  |     |     | 457  |     |
| Starvation Cap Reductn         |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Spillback Cap Reductn          |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn            |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio              |            | 0.40    |          |             | 0.37       |            |     | 0.30 |     |     | 0.63 |     |
| Intersection Summary           |            |         |          |             |            |            |     |      |     |     |      |     |
|                                | Other      |         |          |             |            |            |     |      |     |     |      |     |
| Cycle Length: 60               |            |         |          |             |            |            |     |      |     |     |      |     |
| Actuated Cycle Length: 60      |            |         |          |             |            |            |     |      |     |     |      |     |
| Offset: 0 (0%), Referenced to  | o phase 2: | WBTL an | d 6:EBTI | _, Start of | f Yellow   |            |     |      |     |     |      |     |
| Natural Cycle: 50              |            |         |          |             |            |            |     |      |     |     |      |     |
| Control Type: Actuated-Coor    | dinated    |         |          |             |            |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.74        |            |         |          |             |            |            |     |      |     |     |      |     |
| Intersection Signal Delay: 17  |            |         |          |             | tersection |            | -   |      |     |     |      |     |
| Intersection Capacity Utilizat | tion 46.7% |         |          | IC          | CU Level   | of Service | A   |      |     |     |      |     |
| Analysis Period (min) 15       |            |         |          |             |            |            |     |      |     |     |      |     |

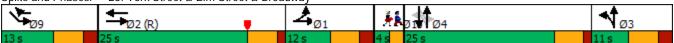
Splits and Phases: 22: York Street & Tower Parkway/Grove Street

| •<br>•<br>•<br>ø | €<br>Ø2 (R)          | • | ₩ø1 | <b>√↑</b> <sub>Ø4</sub> |
|------------------|----------------------|---|-----|-------------------------|
| 4 s              | 30 s                 |   | 4 s | 22 s                    |
|                  | →<br>⊅Ø6 (R)<br>30 s |   |     | 22 s                    |

### New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                                   | ≯            | <b>→</b>    | $\rightarrow$ | +             | *           | •            | Ť            | *    | 1     | Ļ            | ~    | <b>`</b> +  |
|-----------------------------------|--------------|-------------|---------------|---------------|-------------|--------------|--------------|------|-------|--------------|------|-------------|
| Lane Group                        | EBL          | EBT         | EBR           | WBT           | WBR         | NBL2         | NBT          | NBR  | SBL   | SBT          | SBR  | SEL         |
| Lane Configurations               | ۲            | ef 🕴        |               | 1             | 1           | ۲            | 4            |      |       | \$           |      | ۲           |
| Traffic Volume (vph)              | 45           | 580         | 25            | 225           | 30          | 145          | 65           | 100  | 25    | 100          | 25   | 30          |
| Future Volume (vph)               | 45           | 580         | 25            | 225           | 30          | 145          | 65           | 100  | 25    | 100          | 25   | 30          |
| Ideal Flow (vphpl)                | 1900         | 1900        | 1900          | 1900          | 1900        | 1900         | 1900         | 1900 | 1900  | 1900         | 1900 | 1900        |
| Storage Length (ft)               | 0            |             | 0             |               | 0           |              |              | 0    | 0     |              | 0    | 0           |
| Storage Lanes                     | 1            |             | 0             |               | 1           |              |              | 0    | 0     |              | 0    | 1           |
| Taper Length (ft)                 | 0            |             |               |               |             |              |              |      | 0     |              |      | 0           |
| Lane Util. Factor                 | 1.00         | 1.00        | 1.00          | 1.00          | 1.00        | 1.00         | 1.00         | 1.00 | 1.00  | 1.00         | 1.00 | 1.00        |
| Ped Bike Factor                   |              | 0.98        |               |               |             |              | 0.80         |      |       | 0.84         |      |             |
| Frt                               |              | 0.994       |               |               | 0.850       |              | 0.909        |      |       | 0.978        |      |             |
| Flt Protected                     | 0.950        |             |               |               |             | 0.950        |              |      |       | 0.992        |      | 0.950       |
| Satd. Flow (prot)                 | 1601         | 1644        | 0             | 1801          | 1531        | 1504         | 1141         | 0    | 0     | 1557         | 0    | 1711        |
| Flt Permitted                     | 0.950        |             |               |               |             | 0.542        |              |      |       | 0.919        |      | 0.950       |
| Satd. Flow (perm)                 | 1601         | 1644        | 0             | 1801          | 1531        | 858          | 1141         | 0    | 0     | 1356         | 0    | 1711        |
| Right Turn on Red                 |              |             | No            |               |             |              |              | No   |       |              |      |             |
| Satd. Flow (RTOR)                 |              |             |               |               |             |              |              |      |       |              |      |             |
| Link Speed (mph)                  |              | 25          |               | 25            |             |              | 25           |      |       | 25           |      | 25          |
| Link Distance (ft)                |              | 309         |               | 401           |             |              | 898          |      |       | 511          |      | 228         |
| Travel Time (s)                   |              | 8.4         |               | 10.9          |             |              | 24.5         |      |       | 13.9         |      | 6.2         |
| Confl. Peds. (#/hr)               |              |             | 282           |               |             |              |              | 165  | 165   |              | 376  |             |
| Confl. Bikes (#/hr)               |              |             | 15            |               | 15          |              |              | 15   |       |              | 15   |             |
| Peak Hour Factor                  | 0.93         | 0.93        | 0.93          | 0.93          | 0.93        | 0.84         | 0.84         | 0.84 | 0.92  | 0.92         | 0.92 | 0.94        |
| Heavy Vehicles (%)                | 9%           | 9%          | 2%            | 2%            | 2%          | 16%          | 12%          | 21%  | 2%    | 2%           | 2%   | 2%          |
| Adj. Flow (vph)                   | 48           | 624         | 27            | 242           | 32          | 173          | 77           | 119  | 27    | 109          | 27   | 32          |
| Shared Lane Traffic (%)           |              |             |               |               |             |              |              |      |       |              |      |             |
| Lane Group Flow (vph)             | 48           | 651         | 0             | 242           | 32          | 173          | 196          | 0    | 0     | 163          | 0    | 32          |
| Turn Type                         | Prot         | NA          |               | NA            | Over        | D.P+P        | NA           |      | Perm  | NA           |      | Prot        |
| Protected Phases                  | 1            | 12          |               | 2             | 9           | 3            | 34           |      |       | 4            |      | 9           |
| Permitted Phases                  |              | 1.0         |               | •             | •           | 4            | ~            |      | 4     |              |      | 0           |
| Detector Phase                    | 1            | 12          |               | 2             | 9           | 3            | 34           |      | 4     | 4            |      | 9           |
| Switch Phase                      | 1.0          |             |               | 10.0          | 0.0         | 1.0          |              |      | 10.0  | 10.0         |      | 0.0         |
| Minimum Initial (s)               | 4.0          |             |               | 12.0          | 2.0         | 4.0          |              |      | 12.0  | 12.0         |      | 2.0         |
| Minimum Split (s)                 | 10.0         |             |               | 18.0          | 10.0        | 10.0         |              |      | 19.0  | 19.0         |      | 10.0        |
| Total Split (s)                   | 12.0         |             |               | 25.0          | 13.0        | 11.0         |              |      | 25.0  | 25.0         |      | 13.0        |
| Total Split (%)                   | 13.3%        |             |               | 27.8%         | 14.4%       | 12.2%        |              |      | 27.8% | 27.8%        |      | 14.4%       |
| Yellow Time (s)                   | 4.0          |             |               | 4.0           | 4.0         | 4.0          |              |      | 4.0   | 4.0          |      | 4.0         |
| All-Red Time (s)                  | 2.0          |             |               | 1.0           | 2.0         | 2.0          |              |      | 1.0   | 1.0          |      | 2.0         |
| Lost Time Adjust (s)              | 0.0          |             |               | 0.0           | 0.0         | 0.0          |              |      |       | 0.0          |      | 0.0         |
| Total Lost Time (s)               | 6.0          |             |               | 5.0           | 6.0         | 6.0          |              |      | Lood  | 5.0          |      | 6.0         |
| Lead/Lag                          | Lag          |             |               | Lead          |             | Lag          |              |      | Lead  | Lead         |      |             |
| Lead-Lag Optimize?<br>Recall Mode | Nono         |             |               | C Min         | Nono        | Mono         |              |      | Nono  | None         |      | None        |
| Act Effct Green (s)               | None         | 38.5        |               | C-Min<br>27.5 | None<br>6.5 | None<br>20.8 | 26.8         |      | None  | 16.8         |      |             |
| .,                                | 6.0          |             |               |               |             |              |              |      |       |              |      | 6.5         |
| Actuated g/C Ratio                | 0.07         | 0.43        |               | 0.31          | 0.07        | 0.23         | 0.30         |      |       | 0.19<br>0.64 |      | 0.07        |
| v/c Ratio                         | 0.45<br>54.5 | 0.93        |               | 0.44          | 0.29        | 0.74<br>47.8 | 0.58<br>22 7 |      |       |              |      | 0.26        |
| Control Delay                     |              | 49.4<br>0.0 |               | 31.3<br>0.0   | 46.2<br>0.0 | 47.8         | 33.7         |      |       | 45.5<br>0.0  |      | 44.6<br>0.0 |
| Queue Delay                       | 0.0<br>54.5  | 49.4        |               | 31.3          | 46.2        | 47.8         | 0.0<br>33.7  |      |       | 45.5         |      | 44.6        |
| Total Delay                       |              |             |               |               |             |              |              |      |       |              |      |             |
| LOS                               | D            | D           |               | С             | D           | D            | С            |      |       | D            |      | D           |

Lanes, Volumes, Timings SLR


| Lane Group              | Ø10  |  |
|-------------------------|------|--|
| Lane Configurations     |      |  |
| Traffic Volume (vph)    |      |  |
| Future Volume (vph)     |      |  |
| Ideal Flow (vphpl)      |      |  |
| Storage Length (ft)     |      |  |
| Storage Lanes           |      |  |
| Taper Length (ft)       |      |  |
| Lane Util. Factor       |      |  |
| Ped Bike Factor         |      |  |
| Frt                     |      |  |
| Flt Protected           |      |  |
| Satd. Flow (prot)       |      |  |
| Flt Permitted           |      |  |
| Satd. Flow (perm)       |      |  |
| Right Turn on Red       |      |  |
| Satd. Flow (RTOR)       |      |  |
| Link Speed (mph)        |      |  |
| Link Distance (ft)      |      |  |
| Travel Time (s)         |      |  |
| Confl. Peds. (#/hr)     |      |  |
| Confl. Bikes (#/hr)     |      |  |
| Peak Hour Factor        |      |  |
| Heavy Vehicles (%)      |      |  |
| Adj. Flow (vph)         |      |  |
| Shared Lane Traffic (%) |      |  |
| Lane Group Flow (vph)   |      |  |
| Turn Type               |      |  |
| Protected Phases        | 10   |  |
| Permitted Phases        |      |  |
| Detector Phase          |      |  |
| Switch Phase            |      |  |
| Minimum Initial (s)     | 2.0  |  |
| Minimum Split (s)       | 4.0  |  |
| Total Split (s)         | 4.0  |  |
| Total Split (%)         | 4%   |  |
| Yellow Time (s)         | 2.0  |  |
| All-Red Time (s)        | 0.0  |  |
| Lost Time Adjust (s)    | 0.0  |  |
| Total Lost Time (s)     |      |  |
| Lead/Lag                |      |  |
| Lead-Lag Optimize?      |      |  |
| Recall Mode             | None |  |
| Act Effct Green (s)     | None |  |
| Actuated g/C Ratio      |      |  |
| v/c Ratio               |      |  |
| Control Delay           |      |  |
| Queue Delay             |      |  |
| Total Delay             |      |  |
| LOS                     |      |  |
|                         |      |  |

Lanes, Volumes, Timings SLR

### New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                                         | ٨             | -         | $\mathbf{F}$ | +        | *          | 1          | 1    | 1   | 1   | ţ    | ~   | <b>`</b> + |
|-----------------------------------------|---------------|-----------|--------------|----------|------------|------------|------|-----|-----|------|-----|------------|
| Lane Group                              | EBL           | EBT       | EBR          | WBT      | WBR        | NBL2       | NBT  | NBR | SBL | SBT  | SBR | SEL        |
| Approach Delay                          |               | 49.8      |              | 33.0     |            |            | 40.3 |     |     | 45.5 |     | 44.6       |
| Approach LOS                            |               | D         |              | С        |            |            | D    |     |     | D    |     | D          |
| Stops (vph)                             | 44            | 435       |              | 186      | 30         | 122        | 136  |     |     | 135  |     | 30         |
| Fuel Used(gal)                          | 1             | 9         |              | 3        | 0          | 3          | 3    |     |     | 3    |     | 1          |
| CO Emissions (g/hr)                     | 55            | 654       |              | 204      | 35         | 209        | 204  |     |     | 206  |     | 46         |
| NOx Emissions (g/hr)                    | 11            | 127       |              | 40       | 7          | 41         | 40   |     |     | 40   |     | 9          |
| VOC Emissions (g/hr)                    | 13            | 151       |              | 47       | 8          | 48         | 47   |     |     | 48   |     | 11         |
| Dilemma Vehicles (#)                    | 0             | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0          |
| Queue Length 50th (ft)                  | 27            | ~412      |              | 119      | 18         | 77         | 93   |     |     | 86   |     | 17         |
| Queue Length 95th (ft)                  | #64           | #646      |              | 203      | 46         | 118        | 144  |     |     | 147  |     | 46         |
| Internal Link Dist (ft)                 |               | 229       |              | 321      |            |            | 818  |     |     | 431  |     | 148        |
| Turn Bay Length (ft)                    |               |           |              |          |            | 150        |      |     |     |      |     |            |
| Base Capacity (vph)                     | 106           | 703       |              | 551      | 119        | 234        | 329  |     |     | 301  |     | 133        |
| Starvation Cap Reductn                  | 0             | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0          |
| Spillback Cap Reductn                   | 0             | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0          |
| Storage Cap Reductn                     | 0             | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0          |
| Reduced v/c Ratio                       | 0.45          | 0.93      |              | 0.44     | 0.27       | 0.74       | 0.60 |     |     | 0.54 |     | 0.24       |
| Intersection Summary                    |               |           |              |          |            |            |      |     |     |      |     |            |
| Area Type:                              | Other         |           |              |          |            |            |      |     |     |      |     |            |
| Cycle Length: 90                        |               |           |              |          |            |            |      |     |     |      |     |            |
| Actuated Cycle Length: 90               |               |           |              |          |            |            |      |     |     |      |     |            |
| Offset: 0 (0%), Reference               | d to phase 2  | EBWB, S   | Start of Ye  | ellow    |            |            |      |     |     |      |     |            |
| Natural Cycle: 90                       |               |           |              |          |            |            |      |     |     |      |     |            |
| Control Type: Actuated-Co               | oordinated    |           |              |          |            |            |      |     |     |      |     |            |
| Maximum v/c Ratio: 0.93                 |               |           |              |          |            |            |      |     |     |      |     |            |
| Intersection Signal Delay:              |               |           |              |          | tersectior |            |      |     |     |      |     |            |
| Intersection Capacity Utili             | zation 80.5%  | l i       |              | IC       | CU Level   | of Service | e D  |     |     |      |     |            |
| Analysis Period (min) 15                |               |           |              |          |            |            |      |     |     |      |     |            |
| <ul> <li>Volume exceeds capa</li> </ul> |               |           | cally infin  | ite.     |            |            |      |     |     |      |     |            |
| Queue shown is maxin                    |               |           |              |          |            |            |      |     |     |      |     |            |
| # 95th percentile volume                |               |           | leue may     | be longe | er.        |            |      |     |     |      |     |            |
| Queue shown is maxin                    | num after two | o cycles. |              |          |            |            |      |     |     |      |     |            |
|                                         |               |           |              |          |            |            |      |     |     |      |     |            |

| Splits and Phases: | 23: York Street & Elm Street & Broadway |
|--------------------|-----------------------------------------|
|--------------------|-----------------------------------------|



### New Haven Two-Way Study 24: York Street & Chapel Street

|                         | •     |              |              |          |       | •    |          | •     | 0    |          |       |      |
|-------------------------|-------|--------------|--------------|----------|-------|------|----------|-------|------|----------|-------|------|
|                         | ٠     | -            | $\mathbf{F}$ | 1        | -     | •    | 1        | Ť     | 1    | •        | Ŧ     | -    |
| Lane Group              | EBL   | EBT          | EBR          | WBL      | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     |       | 4            |              | <u>۲</u> | 4     |      | <u>۲</u> | 4     |      | <u>۲</u> | 4     |      |
| Traffic Volume (vph)    | 25    | 125          | 25           | 25       | 280   | 95   | 55       | 220   | 75   | 50       | 100   | 25   |
| Future Volume (vph)     | 25    | 125          | 25           | 25       | 280   | 95   | 55       | 220   | 75   | 50       | 100   | 25   |
| Ideal Flow (vphpl)      | 1900  | 1900         | 1900         | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 |
| Lane Width (ft)         | 11    | 11           | 11           | 11       | 11    | 11   | 10       | 11    | 11   | 10       | 11    | 11   |
| Storage Length (ft)     | 50    |              | 0            | 50       |       | 0    | 50       |       | 0    | 50       |       | 0    |
| Storage Lanes           | 0     |              | 0            | 1        |       | 0    | 1        |       | 0    | 1        |       | 0    |
| Taper Length (ft)       | 25    |              |              | 25       |       |      | 25       |       |      | 25       |       |      |
| Lane Util. Factor       | 1.00  | 1.00         | 1.00         | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.97         |              | 0.91     | 0.96  |      | 0.89     | 0.96  |      | 0.93     | 0.97  |      |
| Frt                     |       | 0.981        |              | 0171     | 0.962 |      | 0.07     | 0.962 |      | 0170     | 0.970 |      |
| Flt Protected           |       | 0.993        |              | 0.950    | 0.702 |      | 0.950    | 0.702 |      | 0.950    | 0.770 |      |
| Satd. Flow (prot)       | 0     | 1713         | 0            | 1745     | 1555  | 0    | 1636     | 1625  | 0    | 1652     | 1690  | 0    |
| Flt Permitted           | U     | 0.926        | 0            | 0.663    | 1000  | U    | 0.670    | 1025  | 0    | 0.377    | 1070  | U    |
| Satd. Flow (perm)       | 0     | 1585         | 0            | 1109     | 1555  | 0    | 1021     | 1625  | 0    | 607      | 1690  | 0    |
| Right Turn on Red       | 0     | 1000         | No           | 1107     | 1555  | No   | 1021     | 1025  | No   | 007      | 1070  | No   |
| Satd. Flow (RTOR)       |       |              | NU           |          |       | NU   |          |       | NU   |          |       | INU  |
|                         |       | 25           |              |          | 25    |      |          | 25    |      |          | 25    |      |
| Link Speed (mph)        |       |              |              |          |       |      |          |       |      |          |       |      |
| Link Distance (ft)      |       | 511          |              |          | 419   |      |          | 515   |      |          | 898   |      |
| Travel Time (s)         | (0    | 13.9         | (0           | (0       | 11.4  | (0   | (0       | 14.0  | (0   | (0       | 24.5  | (0   |
| Confl. Peds. (#/hr)     | 60    |              | 60           | 60       |       | 60   | 60       |       | 60   | 60       |       | 60   |
| Confl. Bikes (#/hr)     |       |              | 10           |          |       | 10   |          |       | 10   |          |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92         | 0.92         | 0.92     | 0.92  | 0.92 | 0.87     | 0.87  | 0.87 | 0.92     | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%           | 2%           | 0%       | 4%    | 23%  | 3%       | 5%    | 2%   | 2%       | 2%    | 2%   |
| Adj. Flow (vph)         | 27    | 136          | 27           | 27       | 304   | 103  | 63       | 253   | 86   | 54       | 109   | 27   |
| Shared Lane Traffic (%) |       |              |              |          |       |      |          |       |      |          |       |      |
| Lane Group Flow (vph)   | 0     | 190          | 0            | 27       | 407   | 0    | 63       | 339   | 0    | 54       | 136   | 0    |
| Turn Type               | Perm  | NA           |              | Perm     | NA    |      | Perm     | NA    |      | Perm     | NA    |      |
| Protected Phases        |       | 6            |              |          | 2     |      |          | 4     |      |          | 8     |      |
| Permitted Phases        | 6     |              |              | 2        |       |      | 4        |       |      | 8        |       |      |
| Detector Phase          | 6     | 6            |              | 2        | 2     |      | 4        | 4     |      | 8        | 8     |      |
| Switch Phase            |       |              |              |          |       |      |          |       |      |          |       |      |
| Minimum Initial (s)     | 7.0   | 7.0          |              | 7.0      | 7.0   |      | 7.0      | 7.0   |      | 7.0      | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0         |              | 17.0     | 17.0  |      | 17.0     | 17.0  |      | 17.0     | 17.0  |      |
| Total Split (s)         | 22.0  | 22.0         |              | 22.0     | 22.0  |      | 30.0     | 30.0  |      | 30.0     | 30.0  |      |
| Total Split (%)         | 36.7% | 36.7%        |              | 36.7%    | 36.7% |      | 50.0%    | 50.0% |      | 50.0%    | 50.0% |      |
| Yellow Time (s)         | 3.0   | 3.0          |              | 3.0      | 3.0   |      | 3.0      | 3.0   |      | 3.0      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0          |              | 1.0      | 1.0   |      | 1.0      | 1.0   |      | 1.0      | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0          |              | 0.0      | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     |       | 4.0          |              | 4.0      | 4.0   |      | 4.0      | 4.0   |      | 4.0      | 4.0   |      |
| Lead/Lag                |       |              |              |          |       |      |          |       |      |          |       |      |
| Lead-Lag Optimize?      |       |              |              |          |       |      |          |       |      |          |       |      |
| Recall Mode             | C-Min | C-Min        |              | C-Min    | C-Min |      | None     | None  |      | None     | None  |      |
| Act Effct Green (s)     |       | 30.9         |              | 30.9     | 30.9  |      | 17.9     | 17.9  |      | 17.9     | 17.9  |      |
| Actuated g/C Ratio      |       | 0.52         |              | 0.52     | 0.52  |      | 0.30     | 0.30  |      | 0.30     | 0.30  |      |
| v/c Ratio               |       | 0.52         |              | 0.52     | 0.52  |      | 0.30     | 0.30  |      | 0.30     | 0.30  |      |
|                         |       | 0.23<br>12.3 |              |          | 25.2  |      |          | 25.9  |      |          | 15.8  |      |
| Control Delay           |       |              |              | 20.8     |       |      | 15.3     |       |      | 18.7     |       |      |
| Queue Delay             |       | 0.0          |              | 0.0      | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Delay             |       | 12.3         |              | 20.8     | 25.2  |      | 15.3     | 25.9  |      | 18.7     | 15.8  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Lane Width (ft)         |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
|                         |      |      |
| Frt<br>Fit Drotostad    |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    | 0.0  | 0.0  |
|                         |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      | R I  | N    |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| -                       |      |      |

Lanes, Volumes, Timings SLR

#### New Haven Two-Way Study 24: York Street & Chapel Street

|                               | ٦            | -          | $\mathbf{r}$ | 4           | -          | ×          | 1    | t    | 1   | 1    | ţ    | ~   |
|-------------------------------|--------------|------------|--------------|-------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                    | EBL          | EBT        | EBR          | WBL         | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBR |
| LOS                           |              | В          |              | С           | С          |            | В    | С    |     | В    | В    |     |
| Approach Delay                |              | 12.3       |              |             | 24.9       |            |      | 24.3 |     |      | 16.6 |     |
| Approach LOS                  |              | В          |              |             | С          |            |      | С    |     |      | В    |     |
| Stops (vph)                   |              | 106        |              | 25          | 299        |            | 38   | 242  |     | 37   | 85   |     |
| Fuel Used(gal)                |              | 2          |              | 0           | 4          |            | 1    | 4    |     | 1    | 2    |     |
| CO Emissions (g/hr)           |              | 112        |              | 20          | 308        |            | 39   | 264  |     | 50   | 118  |     |
| NOx Emissions (g/hr)          |              | 22         |              | 4           | 60         |            | 8    | 51   |     | 10   | 23   |     |
| VOC Emissions (g/hr)          |              | 26         |              | 5           | 71         |            | 9    | 61   |     | 12   | 27   |     |
| Dilemma Vehicles (#)          |              | 0          |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)        |              | 30         |              | 9           | 141        |            | 17   | 107  |     | 15   | 37   |     |
| Queue Length 95th (ft)        |              | 100        |              | m15         | #291       |            | 34   | 146  |     | 35   | 61   |     |
| Internal Link Dist (ft)       |              | 431        |              |             | 339        |            |      | 435  |     |      | 818  |     |
| Turn Bay Length (ft)          |              |            |              | 50          |            |            | 50   |      |     | 50   |      |     |
| Base Capacity (vph)           |              | 815        |              | 570         | 800        |            | 442  | 704  |     | 263  | 732  |     |
| Starvation Cap Reductn        |              | 0          |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         |              | 0          |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn           |              | 0          |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             |              | 0.23       |              | 0.05        | 0.51       |            | 0.14 | 0.48 |     | 0.21 | 0.19 |     |
| Intersection Summary          |              |            |              |             |            |            |      |      |     |      |      |     |
|                               | Other        |            |              |             |            |            |      |      |     |      |      |     |
| Cycle Length: 60              |              |            |              |             |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60     |              |            |              | -           |            |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t  | o phase 2:   | WBTL an    | d 6:EBT      | L, Start of | f Yellow   |            |      |      |     |      |      |     |
| Natural Cycle: 60             |              |            |              |             |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Coo    | rdinated     |            |              |             |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.70       |              |            |              |             |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 21 |              |            |              |             | tersection |            | _    |      |     |      |      |     |
| Intersection Capacity Utiliza | tion 63.5%   |            |              | IC          | U Level    | of Service | В    |      |     |      |      |     |
| Analysis Period (min) 15      |              | .,         |              |             |            |            |      |      |     |      |      |     |
| # 95th percentile volume e    |              |            | ieue may     | be longe    | er.        |            |      |      |     |      |      |     |
| Queue shown is maximu         |              | ,          |              |             | 1          |            |      |      |     |      |      |     |
| n Volume for 95th percent     | tile allelle | is meterei | n ny rinst   | ream sini   | nal        |            |      |      |     |      |      |     |

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 24: York Street & Chapel Street



#### New Haven Two-Way Study 25: York Street & Crown Street

|                               | ≯          | -    | $\mathbf{\hat{z}}$ | ∢    | ←       | •          | 1    | Ť     | 1    | 1    | Ļ     | ~    |
|-------------------------------|------------|------|--------------------|------|---------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT  | EBR                | WBL  | WBT     | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            |      |                    |      | \$      |            |      | र्भ   |      |      | ef 👘  |      |
| Traffic Volume (vph)          | 0          | 0    | 0                  | 25   | 90      | 75         | 35   | 395   | 0    | 0    | 125   | 25   |
| Future Volume (vph)           | 0          | 0    | 0                  | 25   | 90      | 75         | 35   | 395   | 0    | 0    | 125   | 25   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900               | 1900 | 1900    | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00 | 1.00               | 1.00 | 1.00    | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |      |                    |      |         |            |      |       |      |      |       |      |
| Frt                           |            |      |                    |      | 0.947   |            |      |       |      |      | 0.978 |      |
| Flt Protected                 |            |      |                    |      | 0.994   |            |      | 0.996 |      |      |       |      |
| Satd. Flow (prot)             | 0          | 0    | 0                  | 0    | 1681    | 0          | 0    | 1773  | 0    | 0    | 1761  | 0    |
| Flt Permitted                 |            |      |                    |      | 0.994   |            |      | 0.996 |      |      |       |      |
| Satd. Flow (perm)             | 0          | 0    | 0                  | 0    | 1681    | 0          | 0    | 1773  | 0    | 0    | 1761  | 0    |
| Link Speed (mph)              |            | 25   |                    |      | 25      |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 502  |                    |      | 419     |            |      | 405   |      |      | 515   |      |
| Travel Time (s)               |            | 13.7 |                    |      | 11.4    |            |      | 11.0  |      |      | 14.0  |      |
| Confl. Peds. (#/hr)           |            |      |                    | 14   |         | 14         | 45   |       |      |      |       | 45   |
| Confl. Bikes (#/hr)           |            |      |                    |      |         | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.92       | 0.92 | 0.92               | 0.65 | 0.65    | 0.65       | 0.91 | 0.91  | 0.91 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)            | 2%         | 2%   | 2%                 | 2%   | 3%      | 3%         | 5%   | 3%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 0          | 0    | 0                  | 38   | 138     | 115        | 38   | 434   | 0    | 0    | 136   | 27   |
| Shared Lane Traffic (%)       |            |      |                    |      |         |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 0    | 0                  | 0    | 291     | 0          | 0    | 472   | 0    | 0    | 163   | 0    |
| Sign Control                  |            | Stop |                    |      | Stop    |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |      |                    |      |         |            |      |       |      |      |       |      |
| Area Type:                    | Other      |      |                    |      |         |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |      |                    |      |         |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 57.1% |      |                    | IC   | U Level | of Service | B    |       |      |      |       |      |
| Analysis Period (min) 15      |            |      |                    |      |         |            |      |       |      |      |       |      |

### Intersection 14.8 B

Intersection Delay, s/veh Intersection LOS

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | 4    |      |      | र्स  |      |      | ef 👘 |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 25   | 90   | 75   | 35   | 395  | 0    | 0    | 125  | 25   |
| Future Vol, veh/h          | 0    | 0    | 0    | 25   | 90   | 75   | 35   | 395  | 0    | 0    | 125  | 25   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.65 | 0.65 | 0.65 | 0.91 | 0.91 | 0.91 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 3    | 3    | 5    | 3    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 0    | 0    | 0    | 38   | 138  | 115  | 38   | 434  | 0    | 0    | 136  | 27   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      | NB   |      |      |      | SB   |      |
| Opposing Approach          |      |      |      |      |      |      | SB   |      |      |      | NB   |      |
| Opposing Lanes             |      |      |      | 0    |      |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Left  |      |      |      | NB   |      |      |      |      |      |      | WB   |      |
| Conflicting Lanes Left     |      |      |      | 1    |      |      | 0    |      |      |      | 1    |      |
| Conflicting Approach Right |      |      |      | SB   |      |      | WB   |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      | 1    |      |      |      | 0    |      |
| HCM Control Delay          |      |      |      | 12.5 |      |      | 17.8 |      |      |      | 10.1 |      |
| HCM LOS                    |      |      |      | В    |      |      | С    |      |      |      | В    |      |

| Lane                   | NBLn1 | WBLn1 | SBLn1 |
|------------------------|-------|-------|-------|
| Vol Left, %            | 8%    | 13%   | 0%    |
| Vol Thru, %            | 92%   | 47%   | 83%   |
| Vol Right, %           | 0%    | 39%   | 17%   |
| Sign Control           | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 430   | 190   | 150   |
| LT Vol                 | 35    | 25    | 0     |
| Through Vol            | 395   | 90    | 125   |
| RT Vol                 | 0     | 75    | 25    |
| Lane Flow Rate         | 473   | 292   | 163   |
| Geometry Grp           | 1     | 1     | 1     |
| Degree of Util (X)     | 0.67  | 0.435 | 0.242 |
| Departure Headway (Hd) | 5.107 | 5.354 | 5.337 |
| Convergence, Y/N       | Yes   | Yes   | Yes   |
| Сар                    | 714   | 672   | 672   |
| Service Time           | 3.107 | 3.391 | 3.373 |
| HCM Lane V/C Ratio     | 0.662 | 0.435 | 0.243 |
| HCM Control Delay      | 17.8  | 12.5  | 10.1  |
| HCM Lane LOS           | С     | В     | В     |
| HCM 95th-tile Q        | 5.2   | 2.2   | 0.9   |

### New Haven Two-Way Study 26: York Street & George Street

|                         |       |       |              |       |                  |      |      |          |       | 、     |       |      |
|-------------------------|-------|-------|--------------|-------|------------------|------|------|----------|-------|-------|-------|------|
|                         | ٦     | -     | $\mathbf{r}$ | •     | -                |      | 1    | T        |       |       | Ŧ     | *    |
| Lane Group              | EBL   | EBT   | EBR          | WBL   | WBT              | WBR  | NBL  | NBT      | NBR   | SBL   | SBT   | SBR  |
| Lane Configurations     | ሻ     | eî 👘  |              |       | - <del>4</del> > |      |      | <b>↑</b> | 1     |       | र्स   |      |
| Traffic Volume (vph)    | 165   | 320   | 25           | 50    | 0                | 50   | 0    | 250      | 115   | 25    | 100   | 0    |
| Future Volume (vph)     | 165   | 320   | 25           | 50    | 0                | 50   | 0    | 250      | 115   | 25    | 100   | 0    |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900  | 1900             | 1900 | 1900 | 1900     | 1900  | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 0     |       | 0            | 0     |                  | 0    | 0    |          | 100   | 0     |       | 0    |
| Storage Lanes           | 1     |       | 0            | 0     |                  | 0    | 0    |          | 1     | 0     |       | 0    |
| Taper Length (ft)       | 0     |       |              | 0     |                  |      | 0    |          |       | 0     |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00  | 1.00             | 1.00 | 1.00 | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         | 0.94  | 0.99  |              |       | 0.93             |      |      |          | 0.86  |       | 0.99  |      |
| Frt                     |       | 0.989 |              |       | 0.932            |      |      |          | 0.850 |       |       |      |
| Flt Protected           | 0.950 |       |              |       | 0.976            |      |      |          |       |       | 0.990 |      |
| Satd. Flow (prot)       | 1646  | 1738  | 0            | 0     | 1551             | 0    | 0    | 1783     | 1487  | 0     | 1783  | 0    |
| Flt Permitted           | 0.687 |       |              |       | 0.769            |      |      |          |       |       | 0.903 |      |
| Satd. Flow (perm)       | 1116  | 1738  | 0            | 0     | 1203             | 0    | 0    | 1783     | 1284  | 0     | 1603  | 0    |
| Right Turn on Red       |       |       | No           |       |                  | No   |      |          | No    |       |       | No   |
| Satd. Flow (RTOR)       |       |       |              |       |                  |      |      |          |       |       |       |      |
| Link Speed (mph)        |       | 25    |              |       | 25               |      |      | 25       |       |       | 25    |      |
| Link Distance (ft)      |       | 504   |              |       | 403              |      |      | 370      |       |       | 405   |      |
| Travel Time (s)         |       | 13.7  |              |       | 11.0             |      |      | 10.1     |       |       | 11.0  |      |
| Confl. Peds. (#/hr)     | 33    |       | 33           | 33    |                  | 33   | 48   |          | 48    | 48    |       | 48   |
| Confl. Bikes (#/hr)     |       |       | 10           |       |                  | 10   |      |          | 10    |       |       | 10   |
| Peak Hour Factor        | 0.90  | 0.90  | 0.90         | 0.92  | 0.92             | 0.92 | 0.96 | 0.96     | 0.96  | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 6%    | 4%    | 0%           | 2%    | 2%               | 2%   | 2%   | 3%       | 5%    | 2%    | 2%    | 2%   |
| Adj. Flow (vph)         | 183   | 356   | 28           | 54    | 0                | 54   | 0    | 260      | 120   | 27    | 109   | 0    |
| Shared Lane Traffic (%) |       |       |              |       |                  |      |      |          |       |       |       |      |
| Lane Group Flow (vph)   | 183   | 384   | 0            | 0     | 108              | 0    | 0    | 260      | 120   | 0     | 136   | 0    |
| Turn Type               | Perm  | NA    |              | Perm  | NA               |      |      | NA       | Perm  | Perm  | NA    |      |
| Protected Phases        |       | 2     |              |       | 6                |      |      | 4        |       |       | 8     |      |
| Permitted Phases        | 2     |       |              | 6     |                  |      |      |          | 4     | 8     |       |      |
| Detector Phase          | 2     | 2     |              | 6     | 6                |      |      | 4        | 4     | 8     | 8     |      |
| Switch Phase            |       |       |              |       |                  |      |      |          |       |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |              | 7.0   | 7.0              |      |      | 7.0      | 7.0   | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |              | 17.0  | 17.0             |      |      | 17.0     | 17.0  | 17.0  | 17.0  |      |
| Total Split (s)         | 22.0  | 22.0  |              | 22.0  | 22.0             |      |      | 30.0     | 30.0  | 30.0  | 30.0  |      |
| Total Split (%)         | 36.7% | 36.7% |              | 36.7% | 36.7%            |      |      | 50.0%    | 50.0% | 50.0% | 50.0% |      |
| Yellow Time (s)         | 3.0   | 3.0   |              | 3.0   | 3.0              |      |      | 3.0      | 3.0   | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |              | 1.0   | 1.0              |      |      | 1.0      | 1.0   | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0   |              |       | 0.0              |      |      | 0.0      | 0.0   |       | 0.0   |      |
| Total Lost Time (s)     | 4.0   | 4.0   |              |       | 4.0              |      |      | 4.0      | 4.0   |       | 4.0   |      |
| Lead/Lag                |       |       |              |       |                  |      |      |          |       |       |       |      |
| Lead-Lag Optimize?      |       |       |              |       |                  |      |      |          |       |       |       |      |
| Recall Mode             | C-Min | C-Min |              | C-Min | C-Min            |      |      | None     | None  | None  | None  |      |
| Act Effct Green (s)     | 37.1  | 37.1  |              |       | 37.1             |      |      | 13.3     | 13.3  |       | 13.3  |      |
| Actuated g/C Ratio      | 0.62  | 0.62  |              |       | 0.62             |      |      | 0.22     | 0.22  |       | 0.22  |      |
| v/c Ratio               | 0.27  | 0.36  |              |       | 0.15             |      |      | 0.66     | 0.42  |       | 0.38  |      |
| Control Delay           | 8.9   | 8.8   |              |       | 4.2              |      |      | 28.8     | 23.4  |       | 21.7  |      |
| Queue Delay             | 0.0   | 0.0   |              |       | 0.0              |      |      | 0.0      | 0.0   |       | 0.0   |      |
| Total Delay             | 8.9   | 8.8   |              |       | 4.2              |      |      | 28.8     | 23.4  |       | 21.7  |      |
| LOS                     | А     | А     |              |       | А                |      |      | С        | С     |       | С     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Fit Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
|                         |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |
| 103                     |      |      |

Lanes, Volumes, Timings SLR

### New Haven Two-Way Study 26: York Street & George Street

|                                                                   | ۶                                                  | -         | $\mathbf{F}$ | 4           | ←         | •   | 1   | Ť    | 1    | 1   | ţ    | ~   |
|-------------------------------------------------------------------|----------------------------------------------------|-----------|--------------|-------------|-----------|-----|-----|------|------|-----|------|-----|
| Lane Group                                                        | EBL                                                | EBT       | EBR          | WBL         | WBT       | WBR | NBL | NBT  | NBR  | SBL | SBT  | SBR |
| Approach Delay                                                    |                                                    | 8.8       |              |             | 4.2       |     |     | 27.1 |      |     | 21.7 |     |
| Approach LOS                                                      |                                                    | А         |              |             | А         |     |     | С    |      |     | С    |     |
| Stops (vph)                                                       | 82                                                 | 177       |              |             | 28        |     |     | 213  | 90   |     | 97   |     |
| Fuel Used(gal)                                                    | 1                                                  | 3         |              |             | 1         |     |     | 3    | 1    |     | 1    |     |
| CO Emissions (g/hr)                                               | 92                                                 | 195       |              |             | 37        |     |     | 215  | 88   |     | 95   |     |
| NOx Emissions (g/hr)                                              | 18                                                 | 38        |              |             | 7         |     |     | 42   | 17   |     | 18   |     |
| VOC Emissions (g/hr)                                              | 21                                                 | 45        |              |             | 9         |     |     | 50   | 20   |     | 22   |     |
| Dilemma Vehicles (#)                                              | 0                                                  | 0         |              |             | 0         |     |     | 0    | 0    |     | 0    |     |
| Queue Length 50th (ft)                                            | 23                                                 | 52        |              |             | 7         |     |     | 86   | 38   |     | 42   |     |
| Queue Length 95th (ft)                                            | 90                                                 | 171       | m25          |             |           |     |     | 134  | 70   |     | 75   |     |
| Internal Link Dist (ft)                                           |                                                    | 424       |              |             | 323       |     |     | 290  |      |     | 325  |     |
| Turn Bay Length (ft)                                              |                                                    |           |              |             |           |     |     |      | 100  |     |      |     |
| Base Capacity (vph)                                               | 689                                                | 1074      |              |             | 743       |     |     | 772  | 556  |     | 694  |     |
| Starvation Cap Reductn                                            | 0                                                  | 0         |              | 0           |           |     |     | 0    | 0    |     | 0    |     |
| Spillback Cap Reductn                                             | 0                                                  | 0         |              | 0           |           |     |     | 0    | 0    |     | 0    |     |
| Storage Cap Reductn                                               | 0                                                  | 0         | 0            |             |           |     | 0   | 0    |      | 0   |      |     |
| Reduced v/c Ratio                                                 | 0.27                                               | 0.36      |              |             | 0.15      |     |     | 0.34 | 0.22 |     | 0.20 |     |
| Intersection Summary                                              |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| 21                                                                | Other                                              |           |              |             |           |     |     |      |      |     |      |     |
| Cycle Length: 60                                                  |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Actuated Cycle Length: 60                                         |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Offset: 9 (15%), Referenced                                       | d to phase 2                                       | 2:EBTL ar | nd 6:WB      | TL, Start ( | of Yellow |     |     |      |      |     |      |     |
| Natural Cycle: 45                                                 |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Control Type: Actuated-Coordinated                                |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Maximum v/c Ratio: 0.66                                           |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Intersection Signal Delay: 15.7 Intersection LOS: B               |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Intersection Capacity Utilization 65.9% ICU Level of Service C    |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Analysis Period (min) 15                                          |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| m Volume for 95th percentile queue is metered by upstream signal. |                                                    |           |              |             |           |     |     |      |      |     |      |     |
|                                                                   |                                                    |           |              |             |           |     |     |      |      |     |      |     |
| Splits and Phases: 26: Ye                                         | Splits and Phases: 26: York Street & George Street |           |              |             |           |     |     |      |      |     |      |     |

|     | i<br>Ø9 | → <sub>Ø2 (R)</sub> | • | Mon | <b>↑</b> Ø4 |
|-----|---------|---------------------|---|-----|-------------|
| 4 s |         | 22 s                |   | 4s  | 30 s        |
|     |         | ✓ Ø6 (R)            | • |     |             |
|     |         | 22 s                |   |     | 30 s        |

|                           | -                                                              | $\mathbf{r}$ | •    | ←    | 1     | 1    |  |
|---------------------------|----------------------------------------------------------------|--------------|------|------|-------|------|--|
| Lane Group                | EBT                                                            | EBR          | WBL  | WBT  | NBL   | NBR  |  |
| Lane Configurations       | <b>†</b>                                                       |              |      | •    | Y     |      |  |
| Traffic Volume (vph)      | 125                                                            | 0            | 0    | 375  | 0     | 55   |  |
| Future Volume (vph)       | 125                                                            | 0            | 0    | 375  | 0     | 55   |  |
| Ideal Flow (vphpl)        | 1900                                                           | 1900         | 1900 | 1900 | 1900  | 1900 |  |
| Lane Util. Factor         | 1.00                                                           | 1.00         | 1.00 | 1.00 | 1.00  | 1.00 |  |
| Ped Bike Factor           |                                                                |              |      |      |       |      |  |
| Frt                       |                                                                |              |      |      | 0.865 |      |  |
| Flt Protected             |                                                                |              |      |      |       |      |  |
| Satd. Flow (prot)         | 1801                                                           | 0            | 0    | 1670 | 1558  | 0    |  |
| Flt Permitted             |                                                                |              |      |      |       |      |  |
| Satd. Flow (perm)         | 1801                                                           | 0            | 0    | 1670 | 1558  | 0    |  |
| Link Speed (mph)          | 25                                                             |              |      | 25   | 25    |      |  |
| Link Distance (ft)        | 419                                                            |              |      | 502  | 522   |      |  |
| Travel Time (s)           | 11.4                                                           |              |      | 13.7 | 14.2  |      |  |
| Confl. Peds. (#/hr)       |                                                                |              |      |      | 75    | 75   |  |
| Confl. Bikes (#/hr)       |                                                                | 15           |      |      |       | 15   |  |
| Peak Hour Factor          | 0.92                                                           | 0.92         | 0.88 | 0.88 | 0.91  | 0.91 |  |
| Heavy Vehicles (%)        | 2%                                                             | 2%           | 2%   | 10%  | 3%    | 2%   |  |
| Adj. Flow (vph)           | 136                                                            | 0            | 0    | 426  | 0     | 60   |  |
| Shared Lane Traffic (%)   |                                                                |              |      |      |       |      |  |
| Lane Group Flow (vph)     | 136                                                            | 0            | 0    | 426  | 60    | 0    |  |
| Sign Control              | Free                                                           |              |      | Free | Stop  |      |  |
| Intersection Summary      |                                                                |              |      |      |       |      |  |
| Area Type:                | Other                                                          |              |      |      |       |      |  |
| Control Type: Unsignalize | d                                                              |              |      |      |       |      |  |
|                           | Intersection Capacity Utilization 39.3% ICU Level of Service A |              |      |      |       |      |  |
| Analysis Period (min) 15  |                                                                |              |      |      |       |      |  |

#### Intersection

| Int Delay, s/veh       | 1        |      |      |          |      |      |
|------------------------|----------|------|------|----------|------|------|
| Movement               | EBT      | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Configurations    | <b>↑</b> |      |      | <b>↑</b> | ۰¥   |      |
| Traffic Vol, veh/h     | 125      | 0    | 0    | 375      | 0    | 55   |
| Future Vol, veh/h      | 125      | 0    | 0    | 375      | 0    | 55   |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0        | 75   | 75   |
| Sign Control           | Free     | Free | Free | Free     | Stop | Stop |
| RT Channelized         | -        | None | -    | None     | -    | None |
| Storage Length         | -        | -    | -    | -        | 0    | -    |
| Veh in Median Storage  | # 0      | -    | -    | 0        | 0    | -    |
| Grade, %               | 0        | -    | -    | 0        | 0    | -    |
| Peak Hour Factor       | 92       | 92   | 88   | 88       | 91   | 91   |
| Heavy Vehicles, %      | 2        | 2    | 2    | 10       | 3    | 2    |
| Mvmt Flow              | 136      | 0    | 0    | 426      | 0    | 60   |

| aior1 | M                                                                                           | laior2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | IV                                                                                          | ajuz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -     | 0                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -     | 0                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | 0                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -     | -                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EB    |                                                                                             | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     |                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NIE   |                                                                                             | EDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NE    |                                                                                             | FRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     |                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0 -<br><br><br><br><br><br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br>0<br><br> | 0       -         -       -         -       -         -       -         -       -         -       -         -       -         -       0         -       0         -       0         -       0         -       0         -       0         -       0         -       0         -       -         -       0         -       -         -       0         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         0       0 | 0       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       0       0         -       0       0         -       0       0         -       0       0         -       -       -         -       0       0         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         0       0       -     < | 0         -         -         637           -         -         136           -         -         501           -         -         501           -         -         501           -         -         501           -         -         501           -         -         543           -         -         5.43           -         -         5.43           -         -         5.43           -         -         5.43           -         -         3.527           -         0         0         440           -         0         0         888           -         0         0         415           -         -         -         415           -         -         -         888           -         0         0         10           B         WB         NB         0           0         0         10         B           MBLn1         EBT         WBT         -           0.0777         -         -         - |

| HCM Lane V/C Ratio    | 0.077 | - | - |
|-----------------------|-------|---|---|
| HCM Control Delay (s) | 10    | - | - |
| HCM Lane LOS          | В     | - | - |
| HCM 95th %tile Q(veh) | 0.3   | - | - |

New Haven Two-Way StudyExistin32: 340 George Street Garage/High Street & George Street

Existing Volumes under 2-way Scenario Street Timing Plan: MORNING PEAK HOUR

|                               | ٦     | <b>→</b> | $\mathbf{F}$ | 4    | +        | *          | •    | 1     | 1    | 1    | ţ     | ~    |
|-------------------------------|-------|----------|--------------|------|----------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL   | EBT      | EBR          | WBL  | WBT      | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |       | \$       |              |      | \$       |            |      | \$    |      |      | \$    |      |
| Traffic Volume (vph)          | 55    | 330      | 50           | 50   | 100      | 25         | 10   | 5     | 10   | 25   | 5     | 25   |
| Future Volume (vph)           | 55    | 330      | 50           | 50   | 100      | 25         | 10   | 5     | 10   | 25   | 5     | 25   |
| Ideal Flow (vphpl)            | 1900  | 1900     | 1900         | 1900 | 1900     | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00  | 1.00     | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |       |          |              |      |          |            |      |       |      |      |       |      |
| Frt                           |       | 0.985    |              |      | 0.981    |            |      | 0.945 |      |      | 0.939 |      |
| Flt Protected                 |       | 0.994    |              |      | 0.987    |            |      | 0.980 |      |      | 0.978 |      |
| Satd. Flow (prot)             | 0     | 1735     | 0            | 0    | 1743     | 0          | 0    | 1668  | 0    | 0    | 1657  | 0    |
| Flt Permitted                 |       | 0.994    |              |      | 0.987    |            |      | 0.980 |      |      | 0.978 |      |
| Satd. Flow (perm)             | 0     | 1735     | 0            | 0    | 1743     | 0          | 0    | 1668  | 0    | 0    | 1657  | 0    |
| Link Speed (mph)              |       | 25       |              |      | 25       |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |       | 403      |              |      | 487      |            |      | 120   |      |      | 398   |      |
| Travel Time (s)               |       | 11.0     |              |      | 13.3     |            |      | 3.3   |      |      | 10.9  |      |
| Confl. Peds. (#/hr)           | 25    |          | 28           | 28   |          | 25         | 5    |       | 5    | 5    |       | 5    |
| Confl. Bikes (#/hr)           |       |          | 10           |      |          | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.71  | 0.71     | 0.71         | 0.95 | 0.88     | 0.88       | 0.95 | 0.95  | 0.95 | 0.52 | 0.52  | 0.52 |
| Heavy Vehicles (%)            | 5%    | 4%       | 0%           | 2%   | 2%       | 2%         | 2%   | 2%    | 2%   | 2%   | 0%    | 2%   |
| Adj. Flow (vph)               | 77    | 465      | 70           | 53   | 114      | 28         | 11   | 5     | 11   | 48   | 10    | 48   |
| Shared Lane Traffic (%)       |       |          |              |      |          |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0     | 612      | 0            | 0    | 195      | 0          | 0    | 27    | 0    | 0    | 106   | 0    |
| Sign Control                  |       | Free     |              |      | Free     |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |       |          |              |      |          |            |      |       |      |      |       |      |
| Area Type:                    | Other |          |              |      |          |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |       |          |              |      |          |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza |       | )        |              | IC   | CU Level | of Service | A    |       |      |      |       |      |
| Analysis Period (min) 15      |       |          |              |      |          |            |      |       |      |      |       |      |

#### Intersection

Int Delay, s/veh

4.2

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      | 4    |      |      | 4    |      |      | 4    |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 55   | 330  | 50   | 50   | 100  | 25   | 10   | 5    | 10   | 25   | 5    | 25   |  |
| Future Vol, veh/h      | 55   | 330  | 50   | 50   | 100  | 25   | 10   | 5    | 10   | 25   | 5    | 25   |  |
| Conflicting Peds, #/hr | 25   | 0    | 28   | 28   | 0    | 25   | 5    | 0    | 5    | 5    | 0    | 5    |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage  | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 71   | 71   | 71   | 95   | 88   | 88   | 95   | 95   | 95   | 52   | 52   | 52   |  |
| Heavy Vehicles, %      | 5    | 4    | 0    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 0    | 2    |  |
| Mvmt Flow              | 77   | 465  | 70   | 53   | 114  | 28   | 11   | 5    | 11   | 48   | 10   | 48   |  |

| Major/Minor          | Major1 |   | N   | lajor2 |   |   | Minor1 |      |       | Minor2 |     |       |  |
|----------------------|--------|---|-----|--------|---|---|--------|------|-------|--------|-----|-------|--|
| Conflicting Flow All | 167    | 0 | 0   | 563    | 0 | 0 | 950    | 955  | 533   | 926    | 976 | 158   |  |
| Stage 1              | -      | - | -   | -      | - | - | 682    | 682  | -     | 259    | 259 | -     |  |
| Stage 2              | -      | - | -   | -      | - | - | 268    | 273  | -     | 667    | 717 | -     |  |
| Critical Hdwy        | 4.15   | - | -   | 4.12   | - | - | 7.12   | 6.52 | 6.22  | 7.12   | 6.5 | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | -   | -      | - | - | 6.12   | 5.52 | -     | 6.12   | 5.5 | -     |  |
| Critical Hdwy Stg 2  | -      | - | -   | -      | - | - | 6.12   | 5.52 | -     | 6.12   | 5.5 | -     |  |
| Follow-up Hdwy       | 2.245  | - | - 1 | 2.218  | - | - | 3.518  |      | 3.318 | 3.518  | 4   | 3.318 |  |
| Pot Cap-1 Maneuver   | 1393   | - | -   | 1008   | - | - | 240    | 258  | 547   | 249    | 253 | 887   |  |
| Stage 1              | -      | - | -   | -      | - | - | 440    | 450  | -     | 746    | 697 | -     |  |
| Stage 2              | -      | - | -   | -      | - | - | 738    | 684  | -     | 448    | 437 | -     |  |
| Platoon blocked, %   |        | - | -   |        | - | - |        |      |       |        |     |       |  |
| Mov Cap-1 Maneuver   | 1366   | - | -   | 986    | - | - | 191    | 214  | 533   | 210    | 210 | 867   |  |
| Mov Cap-2 Maneuver   | -      | - | -   | -      | - | - | 191    | 214  | -     | 210    | 210 | -     |  |
| Stage 1              | -      | - | -   | -      | - | - | 396    | 405  | -     | 672    | 643 | -     |  |
| Stage 2              | -      | - | -   | -      | - | - | 644    | 631  | -     | 397    | 393 | -     |  |
|                      |        |   |     |        |   |   |        |      |       |        |     |       |  |
| Approach             | EB     |   |     | WB     |   |   | NB     |      |       | SB     |     |       |  |
| HCM Control Delay, s | 1      |   |     | 2.4    |   |   | 20.1   |      |       | 21.7   |     |       |  |
| HCM LOS              |        |   |     |        |   |   | С      |      |       | С      |     |       |  |
|                      |        |   |     |        |   |   |        |      |       |        |     |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR S | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 265   | 1366  | -   | -   | 986   | -   | -     | 320   |
| HCM Lane V/C Ratio    | 0.099 | 0.057 | -   | -   | 0.053 | -   | -     | 0.331 |
| HCM Control Delay (s) | 20.1  | 7.8   | 0   | -   | 8.9   | 0   | -     | 21.7  |
| HCM Lane LOS          | С     | А     | А   | -   | А     | А   | -     | С     |
| HCM 95th %tile Q(veh) | 0.3   | 0.2   | -   | -   | 0.2   | -   | -     | 1.4   |

# New Haven Two-Way Study 71: York Street & North Frontage Road

|                         | ≯    | +    | *    | 4       | Ŧ      | •    | •     | Ť     | *    | *    | ţ     | ~    |
|-------------------------|------|------|------|---------|--------|------|-------|-------|------|------|-------|------|
| Lane Group              | EBL  | EBT  | EBR  | WBL     | WBT    | WBR  | NBL   | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations     |      |      |      |         | -€¶‡}> |      |       | र्स   |      |      | ef 👘  |      |
| Traffic Volume (vph)    | 0    | 0    | 0    | 125     | 775    | 175  | 55    | 210   | 0    | 0    | 150   | 25   |
| Future Volume (vph)     | 0    | 0    | 0    | 125     | 775    | 175  | 55    | 210   | 0    | 0    | 150   | 25   |
| Ideal Flow (vphpl)      | 1900 | 1900 | 1900 | 1900    | 1900   | 1900 | 1900  | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor       | 1.00 | 1.00 | 1.00 | 0.91    | 0.91   | 0.91 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor         |      |      |      |         | 0.99   |      |       |       |      |      | 1.00  |      |
| Frt                     |      |      |      |         | 0.976  |      |       |       |      |      | 0.981 |      |
| Flt Protected           |      |      |      |         | 0.994  |      |       | 0.990 |      |      | 01701 |      |
| Satd. Flow (prot)       | 0    | 0    | 0    | 0       | 4669   | 0    | 0     | 1752  | 0    | 0    | 1760  | 0    |
| Flt Permitted           | Ŭ    |      | Ŭ    |         | 0.994  |      |       | 0.903 |      |      |       | Ū    |
| Satd. Flow (perm)       | 0    | 0    | 0    | 0       | 4669   | 0    | 0     | 1598  | 0    | 0    | 1760  | 0    |
| Right Turn on Red       | Ŭ    |      | No   |         | 1007   | No   |       |       | No   |      |       | No   |
| Satd. Flow (RTOR)       |      |      |      |         |        |      |       |       |      |      |       |      |
| Link Speed (mph)        |      | 25   |      |         | 25     |      |       | 25    |      |      | 25    |      |
| Link Distance (ft)      |      | 495  |      |         | 928    |      |       | 252   |      |      | 370   |      |
| Travel Time (s)         |      | 13.5 |      |         | 25.3   |      |       | 6.9   |      |      | 10.1  |      |
| Confl. Bikes (#/hr)     |      | 10.0 | 10   |         | 20.0   | 10   |       | 0.7   | 10   |      | 10.1  | 10   |
| Peak Hour Factor        | 0.92 | 0.92 | 0.92 | 0.83    | 0.83   | 0.83 | 0.79  | 0.79  | 0.79 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 2%   | 2%   | 2%   | 2%      | 4%     | 3%   | 3%    | 4%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)         | 0    | 0    | 0    | 151     | 934    | 211  | 70    | 266   | 0    | 0    | 163   | 27   |
| Shared Lane Traffic (%) | U    | Ū    | U    | 101     | ,01    |      | 10    | 200   | Ū    | Ū    | 100   | 2.   |
| Lane Group Flow (vph)   | 0    | 0    | 0    | 0       | 1296   | 0    | 0     | 336   | 0    | 0    | 190   | 0    |
| Turn Type               | U    | U    | U    | Perm    | NA     | U    | D.P+P | NA    | U    | U    | NA    | U    |
| Protected Phases        |      |      |      | 1 01111 | 6      |      | 7     | 7 8   |      |      | 8     |      |
| Permitted Phases        |      |      |      | 6       | Ŭ      |      | 8     | , 0   |      |      | Ū     |      |
| Detector Phase          |      |      |      | 6       | 6      |      | 78    | 78    |      |      | 8     |      |
| Switch Phase            |      |      |      |         |        |      |       |       |      |      |       |      |
| Minimum Initial (s)     |      |      |      | 12.0    | 12.0   |      | 7.0   |       |      |      | 12.0  |      |
| Minimum Split (s)       |      |      |      | 18.0    | 18.0   |      | 10.0  |       |      |      | 16.0  |      |
| Total Split (s)         |      |      |      | 30.0    | 30.0   |      | 16.0  |       |      |      | 20.0  |      |
| Total Split (%)         |      |      |      | 33.3%   | 33.3%  |      | 17.8% |       |      |      | 22.2% |      |
| Yellow Time (s)         |      |      |      | 4.0     | 4.0    |      | 3.0   |       |      |      | 3.0   |      |
| All-Red Time (s)        |      |      |      | 2.0     | 2.0    |      | 0.0   |       |      |      | 1.0   |      |
| Lost Time Adjust (s)    |      |      |      | 2.0     | 0.0    |      | 0.0   |       |      |      | 0.0   |      |
| Total Lost Time (s)     |      |      |      |         | 6.0    |      |       |       |      |      | 4.0   |      |
| Lead/Lag                |      |      |      |         |        |      | Lead  |       |      |      | Lag   |      |
| Lead-Lag Optimize?      |      |      |      |         |        |      | Yes   |       |      |      | 9     |      |
| Recall Mode             |      |      |      | C-Max   | C-Max  |      | None  |       |      |      | None  |      |
| Act Effct Green (s)     |      |      |      | e man   | 31.4   |      |       | 27.4  |      |      | 13.4  |      |
| Actuated g/C Ratio      |      |      |      |         | 0.35   |      |       | 0.30  |      |      | 0.15  |      |
| v/c Ratio               |      |      |      |         | 0.80   |      |       | 0.66  |      |      | 0.73  |      |
| Control Delay           |      |      |      |         | 33.9   |      |       | 31.9  |      |      | 52.8  |      |
| Queue Delay             |      |      |      |         | 0.0    |      |       | 0.3   |      |      | 0.0   |      |
| Total Delay             |      |      |      |         | 33.9   |      |       | 32.1  |      |      | 52.8  |      |
| LOS                     |      |      |      |         | C      |      |       | C     |      |      | D     |      |
| Approach Delay          |      |      |      |         | 33.9   |      |       | 32.1  |      |      | 52.8  |      |
| Approach LOS            |      |      |      |         | С      |      |       | С     |      |      | D     |      |
| Stops (vph)             |      |      |      |         | 860    |      |       | 227   |      |      | 165   |      |
| Fuel Used(gal)          |      |      |      |         | 19     |      |       | 3     |      |      | 3     |      |

| Lane Group              | Ø3   |  |
|-------------------------|------|--|
| Lane Configurations     |      |  |
| Traffic Volume (vph)    |      |  |
| Future Volume (vph)     |      |  |
| Ideal Flow (vphpl)      |      |  |
| Lane Util. Factor       |      |  |
| Ped Bike Factor         |      |  |
| Frt                     |      |  |
| Flt Protected           |      |  |
| Satd. Flow (prot)       |      |  |
| Flt Permitted           |      |  |
| Satd. Flow (perm)       |      |  |
| Right Turn on Red       |      |  |
| Satd. Flow (RTOR)       |      |  |
| Link Speed (mph)        |      |  |
| Link Distance (ft)      |      |  |
|                         |      |  |
| Travel Time (s)         |      |  |
| Confl. Bikes (#/hr)     |      |  |
| Peak Hour Factor        |      |  |
| Heavy Vehicles (%)      |      |  |
| Adj. Flow (vph)         |      |  |
| Shared Lane Traffic (%) |      |  |
| Lane Group Flow (vph)   |      |  |
| Turn Type               | •    |  |
| Protected Phases        | 3    |  |
| Permitted Phases        |      |  |
| Detector Phase          |      |  |
| Switch Phase            |      |  |
| Minimum Initial (s)     | 1.0  |  |
| Minimum Split (s)       | 24.0 |  |
| Total Split (s)         | 24.0 |  |
| Total Split (%)         | 27%  |  |
| Yellow Time (s)         | 4.0  |  |
| All-Red Time (s)        | 0.0  |  |
| Lost Time Adjust (s)    |      |  |
| Total Lost Time (s)     |      |  |
| Lead/Lag                |      |  |
| Lead-Lag Optimize?      |      |  |
| Recall Mode             | None |  |
| Act Effct Green (s)     |      |  |
| Actuated g/C Ratio      |      |  |
| v/c Ratio               |      |  |
| Control Delay           |      |  |
| Queue Delay             |      |  |
| Total Delay             |      |  |
| LOS                     |      |  |
| Approach Delay          |      |  |
| Approach LOS            |      |  |
| Stops (vph)             |      |  |
| Fuel Used(gal)          |      |  |
|                         |      |  |

New Haven Two-Way Study 71: York Street & North Frontage Road

| Lane GroupEBICO Emissions (g/hr)NOx Emissions (g/hr)VOC Emissions (g/hr)Dilemma Vehicles (#)Queue Length 50th (ft)Queue Length 95th (ft)Internal Link Dist (ft)Turn Bay Length (ft)Base Capacity (vph)Starvation Cap ReductnSpillback Cap ReductnStorage Cap ReductnReduced v/c RatioIntersection Summary | l EBT       | EBR        |          |            |            |     |      |     |     | •    |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|------------|------------|-----|------|-----|-----|------|-----|
| NOx Emissions (g/hr)<br>VOC Emissions (g/hr)<br>Dilemma Vehicles (#)<br>Queue Length 50th (ft)<br>Queue Length 95th (ft)<br>Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio         |             | LDIX       | WBL      | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| VOC Emissions (g/hr)<br>Dilemma Vehicles (#)<br>Queue Length 50th (ft)<br>Queue Length 95th (ft)<br>Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                 |             |            |          | 1344       |            |     | 221  |     |     | 214  |     |
| Dilemma Vehicles (#)<br>Queue Length 50th (ft)<br>Queue Length 95th (ft)<br>Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                         |             |            |          | 262        |            |     | 43   |     |     | 42   |     |
| Queue Length 50th (ft)<br>Queue Length 95th (ft)<br>Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                 |             |            |          | 312        |            |     | 51   |     |     | 50   |     |
| Queue Length 95th (ft)<br>Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                           |             |            |          | 0          |            |     | 0    |     |     | 0    |     |
| Internal Link Dist (ft)<br>Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                     |             |            |          | 257        |            |     | 158  |     |     | 106  |     |
| Turn Bay Length (ft)<br>Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                                                |             |            |          | #334       |            |     | 193  |     |     | 171  |     |
| Base Capacity (vph)<br>Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                                                                        | 415         |            |          | 848        |            |     | 172  |     |     | 290  |     |
| Starvation Cap Reductn<br>Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                                                                                               |             |            |          |            |            |     |      |     |     |      |     |
| Spillback Cap Reductn<br>Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                                                                                                                         |             |            |          | 1627       |            |     | 554  |     |     | 312  |     |
| Storage Cap Reductn<br>Reduced v/c Ratio                                                                                                                                                                                                                                                                  |             |            |          | 0          |            |     | 25   |     |     | 0    |     |
| Reduced v/c Ratio                                                                                                                                                                                                                                                                                         |             |            |          | 0          |            |     | 0    |     |     | 0    |     |
|                                                                                                                                                                                                                                                                                                           |             |            |          | 0          |            |     | 0    |     |     | 0    |     |
| Intersection Summary                                                                                                                                                                                                                                                                                      |             |            |          | 0.80       |            |     | 0.64 |     |     | 0.61 |     |
|                                                                                                                                                                                                                                                                                                           |             |            |          |            |            |     |      |     |     |      |     |
| Area Type: Other                                                                                                                                                                                                                                                                                          |             |            |          |            |            |     |      |     |     |      |     |
| Cycle Length: 90                                                                                                                                                                                                                                                                                          |             |            |          |            |            |     |      |     |     |      |     |
| Actuated Cycle Length: 90                                                                                                                                                                                                                                                                                 |             |            |          |            |            |     |      |     |     |      |     |
| Offset: 16 (18%), Referenced to pha                                                                                                                                                                                                                                                                       | ase 6:WBTL  | , Start of | Yellow   |            |            |     |      |     |     |      |     |
| Natural Cycle: 80                                                                                                                                                                                                                                                                                         |             |            |          |            |            |     |      |     |     |      |     |
| Control Type: Actuated-Coordinated                                                                                                                                                                                                                                                                        |             |            |          |            |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.80                                                                                                                                                                                                                                                                                   |             |            |          |            |            |     |      |     |     |      |     |
| Intersection Signal Delay: 35.5                                                                                                                                                                                                                                                                           |             |            |          | tersection |            |     |      |     |     |      |     |
| Intersection Capacity Utilization 57.2                                                                                                                                                                                                                                                                    | 2%          |            | IC       | U Level o  | of Service | В   |      |     |     |      |     |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                  |             |            |          |            |            |     |      |     |     |      |     |
| # 95th percentile volume exceeds                                                                                                                                                                                                                                                                          |             | leue may   | be longe | r.         |            |     |      |     |     |      |     |
| Queue shown is maximum after                                                                                                                                                                                                                                                                              | two cycles. |            |          |            |            |     |      |     |     |      |     |
| Splits and Phases: 71: York Stree                                                                                                                                                                                                                                                                         |             | . –        |          |            |            |     |      |     |     |      |     |

| ₹Ø6 (R) | <b>∦1</b> ø3 | <b>↑</b> <sub>Ø7</sub> | \$ <b>1</b> ø8 |  |
|---------|--------------|------------------------|----------------|--|
| 30 s    | 24 s         | 16 s                   | 20 s           |  |

## New Haven Two-Way Study 74: College Street & George Street

|                                    | ≯    | +          | *    | 4          | Ļ          | *    | •    | Ť    | *    | *          | Ļ          | ~    |
|------------------------------------|------|------------|------|------------|------------|------|------|------|------|------------|------------|------|
| Lane Group                         | EBL  | EBT        | EBR  | WBL        | WBT        | WBR  | NBL  | NBT  | NBR  | SBL        | SBT        | SBR  |
| Lane Configurations                |      | 4          |      |            | ų          |      |      |      |      |            | \$         |      |
| Traffic Volume (vph)               | 0    | 250        | 105  | 50         | 150        | 0    | 0    | 0    | 0    | 50         | 240        | 25   |
| Future Volume (vph)                | 0    | 250        | 105  | 50         | 150        | 0    | 0    | 0    | 0    | 50         | 240        | 25   |
| Ideal Flow (vphpl)                 | 1900 | 1900       | 1900 | 1900       | 1900       | 1900 | 1900 | 1900 | 1900 | 1900       | 1900       | 1900 |
| Lane Util. Factor                  | 1.00 | 1.00       | 1.00 | 1.00       | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00       | 1.00       | 1.00 |
| Ped Bike Factor                    |      | 0.97       |      |            | 0.99       |      |      |      |      |            | 0.97       |      |
| Frt                                |      | 0.960      |      |            |            |      |      |      |      |            | 0.989      |      |
| Flt Protected                      |      |            |      |            | 0.988      |      |      |      |      |            | 0.992      |      |
| Satd. Flow (prot)                  | 0    | 1435       | 0    | 0          | 1601       | 0    | 0    | 0    | 0    | 0          | 1475       | 0    |
| Flt Permitted                      |      |            |      |            | 0.855      |      |      |      |      |            | 0.992      |      |
| Satd. Flow (perm)                  | 0    | 1435       | 0    | 0          | 1373       | 0    | 0    | 0    | 0    | 0          | 1445       | 0    |
| Right Turn on Red                  |      |            | No   |            |            | No   |      | Ŭ    | No   | Ŭ          | 1110       | No   |
| Satd. Flow (RTOR)                  |      |            |      |            |            |      |      |      |      |            |            |      |
| Link Speed (mph)                   |      | 25         |      |            | 25         |      |      | 25   |      |            | 25         |      |
| Link Distance (ft)                 |      | 487        |      |            | 542        |      |      | 382  |      |            | 372        |      |
| Travel Time (s)                    |      | 13.3       |      |            | 14.8       |      |      | 10.4 |      |            | 10.1       |      |
| Confl. Peds. (#/hr)                | 60   | 10.0       | 60   | 60         | 14.0       | 60   | 60   | 10.4 | 60   | 60         | 10.1       | 60   |
| Confl. Bikes (#/hr)                | 00   |            | 10   | 00         |            | 10   | 00   |      | 00   | 00         |            | 10   |
| Peak Hour Factor                   | 0.91 | 0.91       | 0.91 | 0.92       | 0.92       | 0.92 | 0.92 | 0.92 | 0.92 | 0.83       | 0.83       | 0.83 |
| Heavy Vehicles (%)                 | 2%   | 7%         | 9%   | 2%         | 2%         | 2%   | 2%   | 2%   | 2%   | 5%         | 10%        | 2%   |
| Adj. Flow (vph)                    | 270  | 275        | 115  | 54         | 163        | 270  | 270  | 270  | 270  | 60         | 289        | 30   |
| Shared Lane Traffic (%)            | 0    | 275        | 115  | 54         | 105        | 0    | 0    | 0    | 0    | 00         | 207        | 30   |
| Lane Group Flow (vph)              | 0    | 390        | 0    | 0          | 217        | 0    | 0    | 0    | 0    | 0          | 379        | 0    |
| Turn Type                          | 0    | NA         | 0    | Perm       | NA         | 0    | U    | 0    | 0    | Perm       | NA         | U    |
| Protected Phases                   |      | 2          |      | I CIIII    | 6          |      |      |      |      | I CIIII    | 4          |      |
| Permitted Phases                   |      | 2          |      | 6          | 0          |      |      |      |      | 4          | 4          |      |
| Detector Phase                     |      | 2          |      | 6          | 6          |      |      |      |      | 4          | 4          |      |
| Switch Phase                       |      | Z          |      | 0          | 0          |      |      |      |      | 4          | 4          |      |
| Minimum Initial (s)                |      | 7.0        |      | 7.0        | 7.0        |      |      |      |      | 7.0        | 7.0        |      |
| Minimum Split (s)                  |      | 18.0       |      | 18.0       | 18.0       |      |      |      |      | 18.0       | 18.0       |      |
|                                    |      | 30.0       |      | 30.0       | 30.0       |      |      |      |      | 22.0       | 22.0       |      |
| Total Split (s)<br>Total Split (%) |      | 50.0%      |      | 50.0%      | 50.0%      |      |      |      |      | 36.7%      | 36.7%      |      |
| Yellow Time (s)                    |      | 3.0        |      | 3.0        | 30.0%      |      |      |      |      | 30.7%      | 30.7%      |      |
| All-Red Time (s)                   |      | 3.0<br>1.0 |      | 3.0<br>1.0 | 3.0<br>1.0 |      |      |      |      | 3.0<br>1.0 | 3.0<br>1.0 |      |
|                                    |      |            |      | 1.0        |            |      |      |      |      | 1.0        |            |      |
| Lost Time Adjust (s)               |      | 0.0        |      |            | 0.0        |      |      |      |      |            | 0.0        |      |
| Total Lost Time (s)                |      | 4.0        |      |            | 4.0        |      |      |      |      |            | 4.0        |      |
| Lead/Lag                           |      |            |      |            |            |      |      |      |      |            |            |      |
| Lead-Lag Optimize?                 |      | C Min      |      | C Min      | C Min      |      |      |      |      | Nama       | Nama       |      |
| Recall Mode                        |      | C-Min      |      | C-Min      | C-Min      |      |      |      |      | None       | None       |      |
| Act Effct Green (s)                |      | 29.8       |      |            | 29.8       |      |      |      |      |            | 17.4       |      |
| Actuated g/C Ratio                 |      | 0.50       |      |            | 0.50       |      |      |      |      |            | 0.29       |      |
| v/c Ratio                          |      | 0.55       |      |            | 0.32       |      |      |      |      |            | 0.90       |      |
| Control Delay                      |      | 15.3       |      |            | 13.7       |      |      |      |      |            | 49.1       |      |
| Queue Delay                        |      | 0.0        |      |            | 0.0        |      |      |      |      |            | 0.0        |      |
| Total Delay                        |      | 15.3       |      |            | 13.7       |      |      |      |      |            | 49.1       |      |
| LOS                                |      | В          |      |            | В          |      |      |      |      |            | D          |      |
| Approach Delay                     |      | 15.3       |      |            | 13.7       |      |      |      |      |            | 49.1       | _    |
| Approach LOS                       |      | В          |      |            | В          |      |      |      |      |            | D          |      |
| Stops (vph)                        |      | 249        |      |            | 127        |      |      |      |      |            | 262        |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9    | Ø10  |
|-------------------------|-------|------|
| Lane Configurations     |       |      |
| Traffic Volume (vph)    |       |      |
| Future Volume (vph)     |       |      |
| Ideal Flow (vphpl)      |       |      |
| Lane Util. Factor       |       |      |
| Ped Bike Factor         |       |      |
| Frt                     |       |      |
| Fit Protected           |       |      |
|                         |       |      |
| Satd. Flow (prot)       |       |      |
| Flt Permitted           |       |      |
| Satd. Flow (perm)       |       |      |
| Right Turn on Red       |       |      |
| Satd. Flow (RTOR)       |       |      |
| Link Speed (mph)        |       |      |
| Link Distance (ft)      |       |      |
| Travel Time (s)         |       |      |
| Confl. Peds. (#/hr)     |       |      |
| Confl. Bikes (#/hr)     |       |      |
| Peak Hour Factor        |       |      |
| Heavy Vehicles (%)      |       |      |
| Adj. Flow (vph)         |       |      |
| Shared Lane Traffic (%) |       |      |
| Lane Group Flow (vph)   |       |      |
| Turn Type               |       |      |
| Protected Phases        | 9     | 10   |
| Permitted Phases        |       |      |
| Detector Phase          |       |      |
| Switch Phase            |       |      |
| Minimum Initial (s)     | 2.0   | 2.0  |
| Minimum Split (s)       | 4.0   | 4.0  |
| Total Split (s)         | 4.0   | 4.0  |
| Total Split (%)         | 7%    | 7%   |
| Yellow Time (s)         | 2.0   | 2.0  |
| All-Red Time (s)        | 0.0   | 0.0  |
| Lost Time Adjust (s)    | 0.0   | 0.0  |
| Total Lost Time (s)     |       |      |
| Lead/Lag                |       |      |
| Lead-Lag Optimize?      |       |      |
| Recall Mode             | None  | None |
|                         | NULLE | NOTE |
| Act Effct Green (s)     |       |      |
| Actuated g/C Ratio      |       |      |
| v/c Ratio               |       |      |
| Control Delay           |       |      |
| Queue Delay             |       |      |
| Total Delay             |       |      |
| LOS                     |       |      |
| Approach Delay          |       |      |
| Approach LOS            |       |      |
| Stops (vph)             |       |      |
|                         |       |      |

## New Haven Two-Way Study 74: College Street & George Street

|                                | ۶           | <b>→</b> | $\mathbf{r}$ | 4           | +          | •          | 1   | 1   | 1   | $\mathbf{b}$ | Ļ    | ~   |
|--------------------------------|-------------|----------|--------------|-------------|------------|------------|-----|-----|-----|--------------|------|-----|
| Lane Group                     | EBL         | EBT      | EBR          | WBL         | WBT        | WBR        | NBL | NBT | NBR | SBL          | SBT  | SBR |
| Fuel Used(gal)                 |             | 4        |              |             | 2          |            |     |     |     |              | 5    |     |
| CO Emissions (g/hr)            |             | 247      |              |             | 137        |            |     |     |     |              | 360  |     |
| NOx Emissions (g/hr)           |             | 48       |              |             | 27         |            |     |     |     |              | 70   |     |
| VOC Emissions (g/hr)           |             | 57       |              |             | 32         |            |     |     |     |              | 83   |     |
| Dilemma Vehicles (#)           |             | 0        |              |             | 0          |            |     |     |     |              | 0    |     |
| Queue Length 50th (ft)         |             | 101      |              |             | 33         |            |     |     |     |              | 129  |     |
| Queue Length 95th (ft)         |             | 211      |              |             | 112        |            |     |     |     |              | #236 |     |
| Internal Link Dist (ft)        |             | 407      |              |             | 462        |            |     | 302 |     |              | 292  |     |
| Turn Bay Length (ft)           |             |          |              |             |            |            |     |     |     |              |      |     |
| Base Capacity (vph)            |             | 712      |              |             | 681        |            |     |     |     |              | 433  |     |
| Starvation Cap Reductn         |             | 0        |              |             | 0          |            |     |     |     |              | 0    |     |
| Spillback Cap Reductn          |             | 0        |              |             | 0          |            |     |     |     |              | 0    |     |
| Storage Cap Reductn            |             | 0        |              |             | 0          |            |     |     |     |              | 0    |     |
| Reduced v/c Ratio              |             | 0.55     |              |             | 0.32       |            |     |     |     |              | 0.88 |     |
| Intersection Summary           |             |          |              |             |            |            |     |     |     |              |      |     |
| 71                             | CBD         |          |              |             |            |            |     |     |     |              |      |     |
| Cycle Length: 60               |             |          |              |             |            |            |     |     |     |              |      |     |
| Actuated Cycle Length: 60      |             |          |              |             |            |            |     |     |     |              |      |     |
| Offset: 45 (75%), Reference    | d to phase  | 2:EBT ar | nd 6:WB⁻     | FL, Start ( | of Yellow  |            |     |     |     |              |      |     |
| Natural Cycle: 60              |             |          |              |             |            |            |     |     |     |              |      |     |
| Control Type: Actuated-Coor    | rdinated    |          |              |             |            |            |     |     |     |              |      |     |
| Maximum v/c Ratio: 0.90        |             |          |              |             |            |            |     |     |     |              |      |     |
| Intersection Signal Delay: 27  |             |          |              |             | tersection |            |     |     |     |              |      |     |
| Intersection Capacity Utilizat | tion 70.7%  |          |              | IC          | U Level    | of Service | e C |     |     |              |      |     |
| Analysis Period (min) 15       |             |          |              |             |            |            |     |     |     |              |      |     |
| # 95th percentile volume e     |             |          | ieue may     | be longe    | er.        |            |     |     |     |              |      |     |
| Queue shown is maximul         | m after two | cycles.  |              |             |            |            |     |     |     |              |      |     |
| Collite and Dhasas 74. Ca      | llogo Ctrop |          | an Ctrant    | L           |            |            |     |     |     |              |      |     |
| Splits and Phases: 74: Co      | llege Stree |          | ye Sileel    | L           |            |            |     |     |     |              |      |     |

|     | k <sub>Ø9</sub> | →ø2 (R)          | ₩ø1 | Ø4   |  |
|-----|-----------------|------------------|-----|------|--|
| 4 s |                 | 30 s             | 4 s | 22 s |  |
|     |                 | ✓ Ø6 (R)<br>30 s |     |      |  |

## New Haven Two-Way Study 78: Temple Street & George Street

|                         | ≯     |          | /    |       | t     | *    | 4        | +     | *    | 1        | 1     | 7    |
|-------------------------|-------|----------|------|-------|-------|------|----------|-------|------|----------|-------|------|
|                         | -     | -        | •    | ¥     |       |      | 7        | I     | 1    | *        | +     | •    |
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     |       | <b>.</b> |      |       | ef 👘  |      | <u> </u> | 4Î    |      | <u> </u> | ef 👘  |      |
| Traffic Volume (vph)    | 50    | 230      | 55   | 50    | 100   | 25   | 25       | 125   | 50   | 100      | 80    | 25   |
| Future Volume (vph)     | 50    | 230      | 55   | 50    | 100   | 25   | 25       | 125   | 50   | 100      | 80    | 25   |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 0     |          | 0    | 150   |       | 0    | 75       |       | 0    | 75       |       | 0    |
| Storage Lanes           | 0     |          | 0    | 1     |       | 0    | 1        |       | 0    | 1        |       | 1    |
| Taper Length (ft)       | 0     |          |      | 25    |       |      | 25       |       |      | 25       |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.98     |      | 0.98  | 0.98  |      | 0.95     | 0.98  |      | 0.96     | 0.98  |      |
| Frt                     |       | 0.978    |      |       | 0.970 |      |          | 0.957 |      |          | 0.965 |      |
| Flt Protected           |       | 0.993    |      | 0.950 |       |      | 0.950    |       |      | 0.950    |       |      |
| Satd. Flow (prot)       | 0     | 1488     | 0    | 1540  | 1546  | 0    | 1540     | 1513  | 0    | 1342     | 1426  | 0    |
| Flt Permitted           |       | 0.943    |      | 0.503 |       |      | 0.673    |       |      | 0.573    |       |      |
| Satd. Flow (perm)       | 0     | 1403     | 0    | 797   | 1546  | 0    | 1040     | 1513  | 0    | 776      | 1426  | 0    |
| Right Turn on Red       |       |          | No   |       |       | No   |          |       | No   |          |       | No   |
| Satd. Flow (RTOR)       |       |          |      |       |       |      |          |       |      |          |       |      |
| Link Speed (mph)        |       | 25       |      |       | 25    |      |          | 25    |      |          | 25    |      |
| Link Distance (ft)      |       | 542      |      |       | 404   |      |          | 250   |      |          | 403   |      |
| Travel Time (s)         |       | 14.8     |      |       | 11.0  |      |          | 6.8   |      |          | 11.0  |      |
| Confl. Peds. (#/hr)     | 26    |          | 26   | 26    |       | 26   | 26       |       | 26   | 26       |       | 26   |
| Confl. Bikes (#/hr)     |       |          | 10   |       |       | 10   |          |       | 10   |          |       | 10   |
| Peak Hour Factor        | 0.81  | 0.81     | 0.81 | 0.92  | 0.92  | 0.92 | 0.92     | 0.92  | 0.92 | 0.80     | 0.80  | 0.80 |
| Heavy Vehicles (%)      | 2%    | 7%       | 8%   | 2%    | 2%    | 2%   | 2%       | 2%    | 2%   | 17%      | 12%   | 2%   |
| Adj. Flow (vph)         | 62    | 284      | 68   | 54    | 109   | 27   | 27       | 136   | 54   | 125      | 100   | 31   |
| Shared Lane Traffic (%) |       |          |      |       |       |      |          |       |      |          |       |      |
| Lane Group Flow (vph)   | 0     | 414      | 0    | 54    | 136   | 0    | 27       | 190   | 0    | 125      | 131   | 0    |
| Turn Type               | Perm  | NA       |      | Perm  | NA    |      | Perm     | NA    |      | Perm     | NA    |      |
| Protected Phases        |       | 2        |      |       | 6     |      |          | 4     |      |          | 8     |      |
| Permitted Phases        | 2     |          |      | 6     |       |      | 4        |       |      | 8        |       |      |
| Detector Phase          | 2     | 2        |      | 6     | 6     |      | 4        | 4     |      | 8        | 8     |      |
| Switch Phase            |       |          |      |       |       |      |          |       |      |          |       |      |
| Minimum Initial (s)     | 7.0   | 7.0      |      | 7.0   | 7.0   |      | 7.0      | 7.0   |      | 7.0      | 7.0   |      |
| Minimum Split (s)       | 18.0  | 18.0     |      | 18.0  | 18.0  |      | 18.0     | 18.0  |      | 18.0     | 18.0  |      |
| Total Split (s)         | 28.0  | 28.0     |      | 28.0  | 28.0  |      | 24.0     | 24.0  |      | 24.0     | 24.0  |      |
| Total Split (%)         | 46.7% | 46.7%    |      | 46.7% | 46.7% |      | 40.0%    | 40.0% |      | 40.0%    | 40.0% |      |
| Yellow Time (s)         | 3.0   | 3.0      |      | 3.0   | 3.0   |      | 3.0      | 3.0   |      | 3.0      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0      |      | 1.0   | 1.0   |      | 1.0      | 1.0   |      | 1.0      | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0      |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     |       | 4.0      |      | 4.0   | 4.0   |      | 4.0      | 4.0   |      | 4.0      | 4.0   |      |
| Lead/Lag                |       |          |      |       |       |      |          |       |      |          |       |      |
| Lead-Lag Optimize?      |       |          |      |       |       |      |          |       |      |          |       |      |
| Recall Mode             | C-Min | C-Min    |      | C-Min | C-Min |      | None     | None  |      | None     | None  |      |
| Act Effct Green (s)     |       | 34.8     |      | 34.8  | 34.8  |      | 14.0     | 14.0  |      | 14.0     | 14.0  |      |
| Actuated g/C Ratio      |       | 0.58     |      | 0.58  | 0.58  |      | 0.23     | 0.23  |      | 0.23     | 0.23  |      |
| v/c Ratio               |       | 0.51     |      | 0.12  | 0.15  |      | 0.11     | 0.54  |      | 0.69     | 0.39  |      |
| Control Delay           |       | 9.2      |      | 10.2  | 9.3   |      | 16.6     | 24.7  |      | 39.7     | 21.4  |      |
| Queue Delay             |       | 0.0      |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Delay             |       | 9.2      |      | 10.2  | 9.3   |      | 16.6     | 24.7  |      | 39.7     | 21.4  |      |
| LOS                     |       | А        |      | В     | A     |      | В        | С     |      | D        | С     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9    | Ø10  |
|-------------------------|-------|------|
| Lane Configurations     | ~ ~ ~ |      |
| Traffic Volume (vph)    |       |      |
| Future Volume (vph)     |       |      |
| Ideal Flow (vphpl)      |       |      |
| Storage Length (ft)     |       |      |
|                         |       |      |
| Storage Lanes           |       |      |
| Taper Length (ft)       |       |      |
| Lane Util. Factor       |       |      |
| Ped Bike Factor         |       |      |
| Frt                     |       |      |
| Flt Protected           |       |      |
| Satd. Flow (prot)       |       |      |
| Flt Permitted           |       |      |
| Satd. Flow (perm)       |       |      |
| Right Turn on Red       |       |      |
| Satd. Flow (RTOR)       |       |      |
| Link Speed (mph)        |       |      |
| Link Distance (ft)      |       |      |
| Travel Time (s)         |       |      |
| Confl. Peds. (#/hr)     |       |      |
| Confl. Bikes (#/hr)     |       |      |
| Peak Hour Factor        |       |      |
| Heavy Vehicles (%)      |       |      |
| Adj. Flow (vph)         |       |      |
| Shared Lane Traffic (%) |       |      |
| Lane Group Flow (vph)   |       |      |
| Turn Type               |       |      |
| Protected Phases        | 9     | 10   |
| Permitted Phases        |       |      |
| Detector Phase          |       |      |
| Switch Phase            |       |      |
| Minimum Initial (s)     | 2.0   | 2.0  |
| Minimum Split (s)       | 4.0   | 4.0  |
| Total Split (s)         | 4.0   | 4.0  |
| Total Split (%)         | 7%    | 7%   |
| Yellow Time (s)         | 2.0   | 2.0  |
| All-Red Time (s)        | 0.0   | 0.0  |
| Lost Time Adjust (s)    | 0.0   | 0.0  |
| Total Lost Time (s)     |       |      |
| Lead/Lag                |       |      |
| Lead-Lag Optimize?      |       |      |
| Recall Mode             | None  | None |
|                         | None  | None |
| Act Effct Green (s)     |       |      |
| Actuated g/C Ratio      |       |      |
| v/c Ratio               |       |      |
| Control Delay           |       |      |
| Queue Delay             |       |      |
| Total Delay             |       |      |
| LOS                     |       |      |

## New Haven Two-Way Study 78: Temple Street & George Street

|                               | ≯          | -         | $\mathbf{r}$ | 1           | +          | •          | 1          | Ť    | 1   | 1    | Ļ    | ~   |
|-------------------------------|------------|-----------|--------------|-------------|------------|------------|------------|------|-----|------|------|-----|
| Lane Group                    | EBL        | EBT       | EBR          | WBL         | WBT        | WBR        | NBL        | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                |            | 9.2       |              |             | 9.6        |            |            | 23.7 |     |      | 30.3 |     |
| Approach LOS                  |            | А         |              |             | А          |            |            | С    |     |      | С    |     |
| Stops (vph)                   |            | 168       |              | 30          | 64         |            | 21         | 143  |     | 88   | 82   |     |
| Fuel Used(gal)                |            | 3         |              | 0           | 1          |            | 0          | 2    |     | 1    | 1    |     |
| CO Emissions (g/hr)           |            | 197       |              | 27          | 64         |            | 17         | 142  |     | 104  | 79   |     |
| NOx Emissions (g/hr)          |            | 38        |              | 5           | 12         |            | 3          | 28   |     | 20   | 15   |     |
| VOC Emissions (g/hr)          |            | 46        |              | 6           | 15         |            | 4          | 33   |     | 24   | 18   |     |
| Dilemma Vehicles (#)          |            | 0         |              | 0           | 0          |            | 0          | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)        |            | 28        |              | 7           | 17         |            | 8          | 60   |     | 41   | 40   |     |
| Queue Length 95th (ft)        |            | m101      |              | 33          | 64         |            | 22         | 99   |     | 70   | 62   |     |
| Internal Link Dist (ft)       |            | 462       |              |             | 324        |            |            | 170  |     |      | 323  |     |
| Turn Bay Length (ft)          |            |           |              | 150         |            |            | 75         |      |     | 75   |      |     |
| Base Capacity (vph)           |            | 813       |              | 462         | 896        |            | 346        | 504  |     | 258  | 475  |     |
| Starvation Cap Reductn        |            | 0         |              | 0           | 0          |            | 0          | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         |            | 0         |              | 0           | 0          |            | 0          | 0    |     | 0    | 0    |     |
| Storage Cap Reductn           |            | 0         |              | 0           | 0          |            | 0          | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             |            | 0.51      |              | 0.12        | 0.15       |            | 0.08       | 0.38 |     | 0.48 | 0.28 |     |
| Intersection Summary          |            |           |              |             |            |            |            |      |     |      |      |     |
| 21                            | CBD        |           |              |             |            |            |            |      |     |      |      |     |
| Cycle Length: 60              |            |           |              |             |            |            |            |      |     |      |      |     |
| Actuated Cycle Length: 60     |            |           |              |             |            |            |            |      |     |      |      |     |
| Offset: 0 (0%), Referenced t  | o phase 2  | :EBTL and | d 6:WBTI     | L, Start of | Yellow     |            |            |      |     |      |      |     |
| Natural Cycle: 60             |            |           |              |             |            |            |            |      |     |      |      |     |
| Control Type: Actuated-Coo    | rdinated   |           |              |             |            |            |            |      |     |      |      |     |
| Maximum v/c Ratio: 0.69       |            |           |              |             |            |            |            |      |     |      |      |     |
| Intersection Signal Delay: 17 |            |           |              |             | tersectior |            | _          |      |     |      |      |     |
| Intersection Capacity Utiliza | tion 63.3% | ,<br>)    |              | IC          | U Level    | of Service | e B        |      |     |      |      |     |
| Analysis Period (min) 15      |            | · .       |              |             |            |            |            |      |     |      |      |     |
| m Volume for 95th percent     | tile queue | is metere | d by upst    | iream sigr  | nal.       |            |            |      |     |      |      |     |
| Splits and Phases: 78: Te     | mple Stre  | et & Geor | ge Street    | t           |            |            |            |      |     |      |      |     |
|                               |            |           | ~            |             |            |            | < <b>†</b> |      |     |      |      |     |

| ₽∎ø | 9 🕹 ø2 (R)  | ₽₽ <sub>Ø1</sub> | o <b>™Î</b> ø4 |
|-----|-------------|------------------|----------------|
| 4 s | 28 s        | 4 s              | 24 s           |
|     | ₩<br>Ø6 (R) |                  | ₩ø8            |
|     | 28 s        |                  | 24 s           |

| Lane Group              | Ø9 | Ø10 |  |  |  |
|-------------------------|----|-----|--|--|--|
| Approach Delay          |    |     |  |  |  |
| Approach LOS            |    |     |  |  |  |
| Stops (vph)             |    |     |  |  |  |
| Fuel Used(gal)          |    |     |  |  |  |
| CO Emissions (g/hr)     |    |     |  |  |  |
| NOx Emissions (g/hr)    |    |     |  |  |  |
| VOC Emissions (g/hr)    |    |     |  |  |  |
| Dilemma Vehicles (#)    |    |     |  |  |  |
| Queue Length 50th (ft)  |    |     |  |  |  |
| Queue Length 95th (ft)  |    |     |  |  |  |
| Internal Link Dist (ft) |    |     |  |  |  |
| Turn Bay Length (ft)    |    |     |  |  |  |
| Base Capacity (vph)     |    |     |  |  |  |
| Starvation Cap Reductn  |    |     |  |  |  |
| Spillback Cap Reductn   |    |     |  |  |  |
| Storage Cap Reductn     |    |     |  |  |  |
| Reduced v/c Ratio       |    |     |  |  |  |
| Intersection Summary    |    |     |  |  |  |

#### New Haven Two-Way Study 80: Church Street & Crown Street

|                         | ≯     | +     | *    | 4     | t     | •    | •     | Ť     | *    | 1    | ţ     | ~    |
|-------------------------|-------|-------|------|-------|-------|------|-------|-------|------|------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations     |       | 4     |      | ሻ     | eî.   |      | ۲     | •     |      |      | 4     |      |
| Traffic Volume (vph)    | 25    | 0     | 25   | 50    | 155   | 60   | 120   | 495   | 0    | 0    | 150   | 50   |
| Future Volume (vph)     | 25    | 0     | 25   | 50    | 155   | 60   | 120   | 495   | 0    | 0    | 150   | 50   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900 | 1900  | 1900 |
| Storage Length (ft)     | 0     | 1700  | 0    | 50    | 1700  | 0    | 75    | 1700  | 0    | 0    | 1700  | 0    |
| Storage Lanes           | 0     |       | 0    | 1     |       | 0    | 1     |       | 0    | 0    |       | 0    |
| Taper Length (ft)       | 0     |       | 0    | 15    |       | U    | 15    |       | 0    | 0    |       | U    |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor         | 1.00  | 0.89  | 1.00 | 0.89  | 0.96  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 0.96  | 1.00 |
| Frt                     |       | 0.932 |      | 0.07  | 0.958 |      |       |       |      |      | 0.966 |      |
| Flt Protected           |       | 0.976 |      | 0.950 | 0.750 |      | 0.950 |       |      |      | 0.700 |      |
| Satd. Flow (prot)       | 0     | 1363  | 0    | 1540  | 1172  | 0    | 1510  | 1301  | 0    | 0    | 1506  | 0    |
| Flt Permitted           | 0     | 0.519 | 0    | 0.773 | 11/2  | 0    | 0.950 | 1301  | 0    | U    | 1500  | U    |
| Satd. Flow (perm)       | 0     | 701   | 0    | 1114  | 1172  | 0    | 1510  | 1301  | 0    | 0    | 1506  | 0    |
| 4                       | 0     | 701   | No   | 1114  | 11/2  | No   | 1510  | 1301  | No   | 0    | 1000  | No   |
| Right Turn on Red       |       |       | NO   |       |       | INO  |       |       | NO   |      |       | INO  |
| Satd. Flow (RTOR)       |       | ЭГ    |      |       | ٥r    |      |       | 25    |      |      | 25    |      |
| Link Speed (mph)        |       | 25    |      |       | 25    |      |       | 25    |      |      | 25    |      |
| Link Distance (ft)      |       | 412   |      |       | 510   |      |       | 415   |      |      | 522   |      |
| Travel Time (s)         | 05    | 11.2  | 05   | 05    | 13.9  | 05   |       | 11.3  | 05   |      | 14.2  | 05   |
| Confl. Peds. (#/hr)     | 35    |       | 35   | 35    |       | 35   |       |       | 35   |      |       | 35   |
| Confl. Bikes (#/hr)     | 0.00  |       | 10   | 0.00  | 0.00  | 10   |       |       | 10   | 0.00 | 0.00  | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.80  | 0.80  | 0.80 | 0.88  | 0.88  | 0.88 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%   | 2%    | 4%    | 26%  | 4%    | 8%    | 2%   | 2%   | 2%    | 2%   |
| Parking (#/hr)          |       | -     |      |       | 10    |      |       | 10    | -    | -    |       |      |
| Adj. Flow (vph)         | 27    | 0     | 27   | 63    | 194   | 75   | 136   | 563   | 0    | 0    | 163   | 54   |
| Shared Lane Traffic (%) |       |       | _    |       |       | -    |       |       | _    | _    |       |      |
| Lane Group Flow (vph)   | 0     | 54    | 0    | 63    | 269   | 0    | 136   | 563   | 0    | 0    | 217   | 0    |
| Turn Type               | Perm  | NA    |      | pm+pt | NA    |      | Prot  | NA    |      |      | NA    |      |
| Protected Phases        |       | 6     |      | 5     | 2     |      | 7     | 4     |      |      | 8     |      |
| Permitted Phases        | 6     |       |      | 2     |       |      |       |       |      |      |       |      |
| Detector Phase          | 6     | 6     |      | 5     | 2     |      | 7     | 4     |      |      | 8     |      |
| Switch Phase            |       |       |      |       |       |      |       |       |      |      |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 3.0   | 7.0   |      | 3.0   | 7.0   |      |      | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |      | 7.0   | 17.0  |      | 7.0   | 17.0  |      |      | 17.0  |      |
| Total Split (s)         | 29.0  | 29.0  |      | 10.0  | 39.0  |      | 13.0  | 40.0  |      |      | 27.0  |      |
| Total Split (%)         | 32.2% | 32.2% |      | 11.1% | 43.3% |      | 14.4% | 44.4% |      |      | 30.0% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |      | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |      | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |      | 4.0   | 4.0   |      | 4.0   | 4.0   |      |      | 4.0   |      |
| Lead/Lag                | Lead  | Lead  |      | Lag   |       |      | Lag   |       |      |      | Lead  |      |
| Lead-Lag Optimize?      |       |       |      |       |       |      |       |       |      |      |       |      |
| Recall Mode             | None  | None  |      | None  | None  |      | None  | C-Min |      |      | C-Min |      |
| Act Effct Green (s)     |       | 12.9  |      | 25.9  | 25.9  |      | 16.4  | 50.9  |      |      | 30.5  |      |
| Actuated g/C Ratio      |       | 0.14  |      | 0.29  | 0.29  |      | 0.18  | 0.57  |      |      | 0.34  |      |
| v/c Ratio               |       | 0.54  |      | 0.17  | 0.80  |      | 0.50  | 0.77  |      |      | 0.43  |      |
| Control Delay           |       | 56.9  |      | 22.5  | 46.2  |      | 38.2  | 21.9  |      |      | 30.0  |      |
| Queue Delay             |       | 0.4   |      | 0.0   | 0.6   |      | 0.0   | 0.6   |      |      | 0.0   |      |
| Total Delay             |       | 57.2  |      | 22.5  | 46.8  |      | 38.2  | 22.5  |      |      | 30.0  |      |
|                         |       | 01.2  |      | 22.0  | 10.0  |      | 50.2  | 22.0  |      |      | 00.0  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |  | <br> |
|-------------------------|------|------|--|------|
| Lane Configurations     |      |      |  |      |
| Traffic Volume (vph)    |      |      |  |      |
| Future Volume (vph)     |      |      |  |      |
| Ideal Flow (vphpl)      |      |      |  |      |
| Storage Length (ft)     |      |      |  |      |
| Storage Lanes           |      |      |  |      |
| Taper Length (ft)       |      |      |  |      |
| Lane Util. Factor       |      |      |  |      |
| Ped Bike Factor         |      |      |  |      |
| Frt                     |      |      |  |      |
| Flt Protected           |      |      |  |      |
| Satd. Flow (prot)       |      |      |  |      |
| Flt Permitted           |      |      |  |      |
| Satd. Flow (perm)       |      |      |  |      |
| Right Turn on Red       |      |      |  |      |
| Satd. Flow (RTOR)       |      |      |  |      |
| Link Speed (mph)        |      |      |  |      |
| Link Distance (ft)      |      |      |  |      |
| Travel Time (s)         |      |      |  |      |
| Confl. Peds. (#/hr)     |      |      |  |      |
| Confl. Bikes (#/hr)     |      |      |  |      |
| Peak Hour Factor        |      |      |  |      |
| Heavy Vehicles (%)      |      |      |  |      |
| Parking (#/hr)          |      |      |  |      |
| Adj. Flow (vph)         |      |      |  |      |
| Shared Lane Traffic (%) |      |      |  |      |
| Lane Group Flow (vph)   |      |      |  |      |
| Turn Type               |      |      |  |      |
| Protected Phases        | 9    | 10   |  |      |
| Permitted Phases        | ,    | 10   |  |      |
| Detector Phase          |      |      |  |      |
| Switch Phase            |      |      |  |      |
| Minimum Initial (s)     | 2.0  | 2.0  |  |      |
| Minimum Split (s)       | 7.0  | 4.0  |  |      |
| Total Split (s)         | 7.0  | 4.0  |  |      |
| Total Split (%)         | 8%   | 4%   |  |      |
| Yellow Time (s)         | 2.0  | 2.0  |  |      |
| All-Red Time (s)        | 0.0  | 0.0  |  |      |
| Lost Time Adjust (s)    | 0.0  | 0.0  |  |      |
| Total Lost Time (s)     |      |      |  |      |
| Lead/Lag                |      |      |  |      |
| Lead-Lag Optimize?      |      |      |  |      |
| Recall Mode             | None | None |  |      |
| Act Effct Green (s)     |      |      |  |      |
| Actuated g/C Ratio      |      |      |  |      |
| v/c Ratio               |      |      |  |      |
| Control Delay           |      |      |  |      |
| Queue Delay             |      |      |  |      |
| Total Delay             |      |      |  |      |
|                         |      |      |  | _    |

#### New Haven Two-Way Study 80: Church Street & Crown Street

|                                | _ الح           | • •         | ∢            | +           | *         | 1     | t    | ۲   | 1   | ţ    | ~   |
|--------------------------------|-----------------|-------------|--------------|-------------|-----------|-------|------|-----|-----|------|-----|
| Lane Group                     | EBL E           | BT EBR      | WBL          | WBT         | WBR       | NBL   | NBT  | NBR | SBL | SBT  | SBF |
| LOS                            |                 | E           | С            | D           |           | D     | С    |     |     | С    |     |
| Approach Delay                 | 57              | .2          |              | 42.2        |           |       | 25.5 |     |     | 30.0 |     |
| Approach LOS                   |                 | E           |              | D           |           |       | С    |     |     | С    |     |
| Stops (vph)                    |                 | 19          | 33           | 190         |           | 95    | 358  |     |     | 142  |     |
| Fuel Used(gal)                 |                 | 1           | 1            | 4           |           | 2     | 5    |     |     | 3    |     |
| CO Emissions (g/hr)            |                 | 66          | 40           | 258         |           | 120   | 373  |     |     | 186  |     |
| NOx Emissions (g/hr)           |                 | 3           | 8            | 50          |           | 23    | 73   |     |     | 36   |     |
| VOC Emissions (g/hr)           |                 | 15          | 9            | 60          |           | 28    | 86   |     |     | 43   |     |
| Dilemma Vehicles (#)           |                 | 0           | 0            | 0           |           | 0     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)         |                 | 29          | 26           | 140         |           | 78    | 255  |     |     | 91   |     |
| Queue Length 95th (ft)         | #`              | 70          | 43           | 171         |           | m#151 | #506 |     |     | m159 |     |
| Internal Link Dist (ft)        | 3               | 32          |              | 430         |           |       | 335  |     |     | 442  |     |
| Turn Bay Length (ft)           |                 |             | 50           |             |           | 75    |      |     |     |      |     |
| Base Capacity (vph)            | 1               | 94          | 373          | 455         |           | 274   | 735  |     |     | 510  |     |
| Starvation Cap Reductn         |                 | 0           | 0            | 0           |           | 0     | 29   |     |     | 0    |     |
| Spillback Cap Reductn          |                 | 22          | 0            | 37          |           | 0     | 4    |     |     | 0    |     |
| Storage Cap Reductn            |                 | 0           | 0            | 0           |           | 0     | 0    |     |     | 0    |     |
| Reduced v/c Ratio              | 0.3             | 31          | 0.17         | 0.64        |           | 0.50  | 0.80 |     |     | 0.43 |     |
| Intersection Summary           |                 |             |              |             |           |       |      |     |     |      |     |
| /I                             | BD              |             |              |             |           |       |      |     |     |      |     |
| Cycle Length: 90               |                 |             |              |             |           |       |      |     |     |      |     |
| Actuated Cycle Length: 90      |                 |             |              |             |           |       |      |     |     |      |     |
| Offset: 64 (71%), Referenced   | d to phase 4:NE | ST and 8:SI | BT, Start of | f Yellow    |           |       |      |     |     |      |     |
| Natural Cycle: 80              |                 |             |              |             |           |       |      |     |     |      |     |
| Control Type: Actuated-Coor    | dinated         |             |              |             |           |       |      |     |     |      |     |
| Maximum v/c Ratio: 0.80        |                 |             |              |             |           |       |      |     |     |      |     |
| Intersection Signal Delay: 31  |                 |             |              | ntersection |           |       |      |     |     |      |     |
| Intersection Capacity Utilizat | ion 62.2%       |             | ](           | CU Level    | of Servic | еВ    |      |     |     |      |     |
| Analysis Period (min) 15       |                 |             |              |             |           |       |      |     |     |      |     |
| # 95th percentile volume e     |                 |             | ay be long   | er.         |           |       |      |     |     |      |     |
| Queue shown is maximur         |                 |             |              |             |           |       |      |     |     |      |     |
| m Volume for 95th percent      | ile queue is me | tered by up | ostream sig  | nal.        |           |       |      |     |     |      |     |

#### Splits and Phases: 80: Church Street & Crown Street

| ₩ø9 | <b>★</b> Ø2              |             | ÷.  | Ø10 Ø4 (R) |             |
|-----|--------------------------|-------------|-----|------------|-------------|
| 7 s | 39 s                     |             | 4 s | 40 s       |             |
|     | - <b>4</b> <sub>06</sub> | <b>√</b> Ø5 |     | Ø8 (R)     | <b>1</b> Ø7 |
|     | 29 s                     | 10 s        |     | 27 s       | 13 s        |

## New Haven Two-Way Study 81: Church Street & George Street

| BT SBR<br>50 50<br>50 50<br>50 50<br>00 1900<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50 50<br>50 50<br>00 1900<br>0                                                                                                                                                                                                                                                                   |
| 50 50<br>50 50<br>00 1900<br>0                                                                                                                                                                                                                                                                   |
| 50 50<br>00 1900<br>0                                                                                                                                                                                                                                                                            |
| 00 1900<br>0                                                                                                                                                                                                                                                                                     |
| 0                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                  |
| U U                                                                                                                                                                                                                                                                                              |
| -                                                                                                                                                                                                                                                                                                |
| .00 1.00                                                                                                                                                                                                                                                                                         |
| 97                                                                                                                                                                                                                                                                                               |
| 63                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |
| 20 0                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                  |
| 20 0                                                                                                                                                                                                                                                                                             |
| No                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |
| 25                                                                                                                                                                                                                                                                                               |
| 15                                                                                                                                                                                                                                                                                               |
| 1.3                                                                                                                                                                                                                                                                                              |
| 20                                                                                                                                                                                                                                                                                               |
| 10                                                                                                                                                                                                                                                                                               |
| .92 0.92                                                                                                                                                                                                                                                                                         |
| 2% 2%                                                                                                                                                                                                                                                                                            |
| 63 54                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                  |
| .17 0                                                                                                                                                                                                                                                                                            |
| NA                                                                                                                                                                                                                                                                                               |
| 8                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                  |
| 8                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                  |
| 7.0                                                                                                                                                                                                                                                                                              |
| 7.0                                                                                                                                                                                                                                                                                              |
| 3.0                                                                                                                                                                                                                                                                                              |
| 5%                                                                                                                                                                                                                                                                                               |
| 3.0                                                                                                                                                                                                                                                                                              |
| 1.0                                                                                                                                                                                                                                                                                              |
| 0.0                                                                                                                                                                                                                                                                                              |
| 4.0                                                                                                                                                                                                                                                                                              |
| ad                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |
| /lin                                                                                                                                                                                                                                                                                             |
| 6.3                                                                                                                                                                                                                                                                                              |
| .40                                                                                                                                                                                                                                                                                              |
| .35                                                                                                                                                                                                                                                                                              |
| 5.8                                                                                                                                                                                                                                                                                              |
| 0.0                                                                                                                                                                                                                                                                                              |
| 5.8                                                                                                                                                                                                                                                                                              |
| B                                                                                                                                                                                                                                                                                                |
| 0.<br>99<br>5<br>5<br>5<br>4<br>1<br>1<br>2<br>2<br>3<br>(<br>2<br>2<br>5<br>1<br>1<br>2<br>2<br>3<br>(<br>2<br>2<br>2<br>1<br>1<br>2<br>2<br>3<br>(<br>2<br>2<br>1<br>1<br>1<br>2<br>2<br>3<br>(<br>2<br>1<br>1<br>1<br>1<br>2<br>2<br>(<br>2<br>1<br>1<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1 |

Lanes, Volumes, Timings SLR

| Lane Group<br>Lane Configurations<br>Traffic Volume (vph) | Ø9   | Ø10  |
|-----------------------------------------------------------|------|------|
|                                                           |      |      |
|                                                           |      |      |
| Future Volume (vph)                                       |      |      |
| Ideal Flow (vphpl)                                        |      |      |
| Storage Length (ft)                                       |      |      |
|                                                           |      |      |
| Storage Lanes                                             |      |      |
| Taper Length (ft)                                         |      |      |
| Lane Util. Factor                                         |      |      |
| Ped Bike Factor                                           |      |      |
| Frt                                                       |      |      |
| Flt Protected                                             |      |      |
| Satd. Flow (prot)                                         |      |      |
| Flt Permitted                                             |      |      |
| Satd. Flow (perm)                                         |      |      |
| Right Turn on Red                                         |      |      |
| Satd. Flow (RTOR)                                         |      |      |
| Link Speed (mph)                                          |      |      |
| Link Distance (ft)                                        |      |      |
| Travel Time (s)                                           |      |      |
| Confl. Peds. (#/hr)                                       |      |      |
| Confl. Bikes (#/hr)                                       |      |      |
| Peak Hour Factor                                          |      |      |
| Heavy Vehicles (%)                                        |      |      |
| Adj. Flow (vph)                                           |      |      |
| Shared Lane Traffic (%)                                   |      |      |
| Lane Group Flow (vph)                                     |      |      |
| Turn Type                                                 |      |      |
| Protected Phases                                          | 9    | 10   |
| Permitted Phases                                          |      |      |
| Detector Phase                                            |      |      |
| Switch Phase                                              |      |      |
| Minimum Initial (s)                                       | 2.0  | 2.0  |
| Minimum Split (s)                                         | 7.0  | 4.0  |
| Total Split (s)                                           | 7.0  | 4.0  |
| Total Split (%)                                           | 8%   | 4%   |
| Yellow Time (s)                                           | 2.0  | 2.0  |
| All-Red Time (s)                                          | 0.0  | 0.0  |
| Lost Time Adjust (s)                                      | 0.0  | 0.0  |
| Total Lost Time (s)                                       |      |      |
| Lead/Lag                                                  |      |      |
|                                                           |      |      |
| Lead-Lag Optimize?                                        | Mono | None |
|                                                           | None | None |
| Act Effct Green (s)                                       |      |      |
| Actuated g/C Ratio                                        |      |      |
| v/c Ratio                                                 |      |      |
| Control Delay                                             |      |      |
| Queue Delay                                               |      |      |
|                                                           |      |      |
| Total Delay<br>LOS                                        |      |      |

#### New Haven Two-Way Study 81: Church Street & George Street

|                               | ≯            | -         | $\mathbf{F}$ | ∢          | +          | •          | 1    | Ť    | 1   | 1    | Ļ    | ~   |
|-------------------------------|--------------|-----------|--------------|------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                    | EBL          | EBT       | EBR          | WBL        | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                |              | 50.8      |              |            | 43.1       |            |      | 37.7 |     |      | 23.3 |     |
| Approach LOS                  |              | D         |              |            | D          |            |      | D    |     |      | С    |     |
| Stops (vph)                   | 192          | 98        |              | 35         | 120        |            | 71   | 239  |     | 52   | 117  |     |
| Fuel Used(gal)                | 4            | 2         |              | 1          | 2          |            | 1    | 5    |     | 1    | 2    |     |
| CO Emissions (g/hr)           | 260          | 121       |              | 43         | 170        |            | 93   | 356  |     | 64   | 126  |     |
| NOx Emissions (g/hr)          | 51           | 24        |              | 8          | 33         |            | 18   | 69   |     | 13   | 24   |     |
| VOC Emissions (g/hr)          | 60           | 28        |              | 10         | 39         |            | 22   | 83   |     | 15   | 29   |     |
| Dilemma Vehicles (#)          | 0            | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)        | 104          | 69        |              | 29         | 96         |            | 45   | 192  |     | 34   | 53   |     |
| Queue Length 95th (ft)        | 144          | 110       |              | 42         | 123        |            | 91   | #475 |     | 73   | 97   |     |
| Internal Link Dist (ft)       |              | 324       |              |            | 444        |            |      | 373  |     |      | 335  |     |
| Turn Bay Length (ft)          | 150          |           |              | 150        |            |            |      |      |     | 75   |      |     |
| Base Capacity (vph)           | 349          | 416       |              | 356        | 298        |            | 185  | 658  |     | 154  | 613  |     |
| Starvation Cap Reductn        | 0            | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         | 0            | 0         |              | 0          | 0          |            | 0    | 88   |     | 0    | 0    |     |
| Storage Cap Reductn           | 0            | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             | 0.69         | 0.31      |              | 0.21       | 0.60       |            | 0.46 | 0.78 |     | 0.35 | 0.35 |     |
| Intersection Summary          |              |           |              |            |            |            |      |      |     |      |      |     |
| Area Type:                    | CBD          |           |              |            |            |            |      |      |     |      |      |     |
| Cycle Length: 90              |              |           |              |            |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 90     |              |           |              |            |            |            |      |      |     |      |      |     |
| Offset: 69 (77%), Reference   | ed to phase  | 4:NBT a   | nd 8:SBT     | , Start of | Yellow     |            |      |      |     |      |      |     |
| Natural Cycle: 80             |              |           |              |            |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Coo    | ordinated    |           |              |            |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.85       |              |           |              |            |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 3  |              |           |              |            | tersectior |            |      |      |     |      |      |     |
| Intersection Capacity Utiliza | ation 63.1%  |           |              | IC         | U Level o  | of Service | B    |      |     |      |      |     |
| Analysis Period (min) 15      |              |           |              |            |            |            |      |      |     |      |      |     |
| # 95th percentile volume      |              |           | ieue may     | be longe   | r.         |            |      |      |     |      |      |     |
| Queue shown is maximu         | um after two | o cycles. |              |            |            |            |      |      |     |      |      |     |

Splits and Phases: 81: Church Street & George Street

| ₩ø9 | ₩<br>Ø2     | ▶ <sub>Ø1</sub> | <u>}</u> | Ø10 Ø4 (R) | Ø3   |
|-----|-------------|-----------------|----------|------------|------|
| 7s  | 24 s        | 18 s            | 4 s      | 24 s       | 13 s |
|     | <b>≁</b> ∞6 | <b>√</b> Ø5     |          | Ø8 (R)     | Ø7   |
|     | 35 s        | 7 s             |          | 23 s       | 14 s |

## New Haven Two-Way Study 1: Church Street & Chapel Street

|                                        | ٨             | -        | >       | ~        | +               | ×.      | •             | t         | *    | 1     | Ţ             | ~       |
|----------------------------------------|---------------|----------|---------|----------|-----------------|---------|---------------|-----------|------|-------|---------------|---------|
| Lane Group                             | EBL           | EBT      | EBR     | ▼<br>WBL | WBT             | WBR     | NBL           | NBT       | NBR  | SBL   | ▼<br>SBT      | SBR     |
| Lane Configurations                    | <u> </u>      | 101<br>1 | LDI     | VVDL     | 41 <del>)</del> | WDI     |               | 1001<br>• | NDI  | JDL   |               |         |
| Traffic Volume (vph)                   | 30            | 270      | 25      | 50       | 355             | 80      | 115           | 465       | 125  | 25    | 200           | 50      |
| Future Volume (vph)                    | 30            | 270      | 25      | 50       | 355             | 80      | 115           | 405       | 125  | 25    | 200           | 50      |
| Ideal Flow (vphpl)                     | 1900          | 1900     | 1900    | 1900     | 355<br>1900     | 1900    | 1900          | 405       | 120  | 1900  | 1900          | 1900    |
| Grade (%)                              | 1900          | -1%      | 1900    | 1900     | -3%             | 1900    | 1900          | -6%       | 1900 | 1900  | -2%           | 1900    |
| Storage Length (ft)                    | 50            | -170     | 0       | 0        | -370            | 0       | 75            | -0 /0     | 0    | 0     | -2 /0         | 0       |
| Storage Lanes                          |               |          | 0       | 0        |                 | 0       | 1             |           | 0    | 0     |               | 0       |
| Taper Length (ft)                      | 25            |          | 0       | 0        |                 | 0       | 25            |           | 0    | 25    |               | 0       |
| Lane Util. Factor                      | 1.00          | 1.00     | 1.00    | 0.95     | 0.95            | 0.95    | 1.00          | 1.00      | 1.00 | 1.00  | 1.00          | 1.00    |
| Ped Bike Factor                        | 0.83          | 0.95     | 1.00    | 0.95     | 0.95            | 0.93    | 1.00          | 0.87      | 1.00 | 1.00  | 0.93          | 1.00    |
| Frt                                    | 0.03          | 0.95     |         |          | 0.09            |         |               | 0.87      |      |       | 0.93          |         |
| Fit Protected                          | 0.950         | 0.907    |         |          | 0.975           |         | 0.950         | 0.900     |      |       | 0.970         |         |
|                                        |               | 1504     | 0       | 0        | 2558            | 0       |               | 1054      | 0    | 0     | 0.995<br>1483 | 0       |
| Satd. Flow (prot)                      | 1547<br>0.311 | 1526     | 0       | 0        | 0.774           | 0       | 1498<br>0.950 | 1354      | 0    | 0     | 0.705         | 0       |
| Flt Permitted                          |               | 1504     | 0       | 0        |                 | 0       | 0.950<br>1498 | 1054      | 0    | 0     |               | 0       |
| Satd. Flow (perm)<br>Right Turn on Red | 422           | 1526     | 0<br>No | 0        | 1990            | 0<br>No | 1498          | 1354      | -    | 0     | 1050          | 0<br>No |
| 5                                      |               |          | INO     |          |                 | INO     |               |           | No   |       |               | NO      |
| Satd. Flow (RTOR)                      |               | 25       |         |          | 25              |         |               | 25        |      |       | 25            |         |
| Link Speed (mph)                       |               |          |         |          |                 |         |               |           |      |       |               |         |
| Link Distance (ft)                     |               | 413      |         |          | 476             |         |               | 522       |      |       | 476           |         |
| Travel Time (s)                        | 010           | 11.3     | 210     | 201      | 13.0            | 201     |               | 14.2      | 220  | 220   | 13.0          | 220     |
| Confl. Peds. (#/hr)                    | 218           |          | 218     | 291      |                 | 291     |               |           | 229  | 229   |               | 229     |
| Confl. Bikes (#/hr)                    | 0.05          | 0.05     | 10      | 0.00     | 0.00            | 10      | 0.07          | 0.07      | 10   | 0.00  | 0.00          | 10      |
| Peak Hour Factor                       | 0.85          | 0.85     | 0.85    | 0.88     | 0.88            | 0.88    | 0.87          | 0.87      | 0.87 | 0.92  | 0.92          | 0.92    |
| Heavy Vehicles (%)                     | 2%            | 2%       | 2%      | 2%       | 9%              | 4%      | 8%            | 6%        | 5%   | 2%    | 2%            | 2%      |
| Adj. Flow (vph)                        | 35            | 318      | 29      | 57       | 403             | 91      | 132           | 534       | 144  | 27    | 217           | 54      |
| Shared Lane Traffic (%)                | ЭГ            | 247      | 0       | 0        | ГГ1             | 0       | 100           | (70       | 0    | 0     | 200           | 0       |
| Lane Group Flow (vph)                  | 35            | 347      | 0       | 0        | 551             | 0       | 132           | 678       | 0    | 0     | 298           | 0       |
| Turn Type<br>Protected Phases          | Perm          | NA       |         | Perm     | NA              |         | Prot          | NA        |      | Perm  | NA            |         |
|                                        | 1             | 6        |         | 2        | 2               |         | 7             | 4         |      | 0     | 8             |         |
| Permitted Phases                       | 6             | 1        |         | 2        | 0               |         | 7             | 4         |      | 8     | 0             |         |
| Detector Phase                         | 6             | 6        |         | 2        | 2               |         | 7             | 4         |      | 8     | 8             |         |
| Switch Phase                           | 7.0           | 7.0      |         | 7.0      | 7.0             |         | 2.0           | 7.0       |      | 7.0   | 7.0           |         |
| Minimum Initial (s)                    | 7.0           | 7.0      |         | 7.0      | 7.0             |         | 3.0           | 7.0       |      | 7.0   | 7.0           |         |
| Minimum Split (s)                      | 17.0          | 17.0     |         | 17.0     | 17.0            |         | 7.0           | 17.0      |      | 17.0  | 17.0          |         |
| Total Split (s)                        | 32.0          | 32.0     |         | 32.0     | 32.0            |         | 15.0          | 47.0      |      | 32.0  | 32.0          |         |
| Total Split (%)                        | 35.6%         | 35.6%    |         | 35.6%    | 35.6%           |         | 16.7%         | 52.2%     |      | 35.6% | 35.6%         |         |
| Yellow Time (s)                        | 3.0           | 3.0      |         | 3.0      | 3.0             |         | 3.0           | 3.0       |      | 3.0   | 3.0           |         |
| All-Red Time (s)                       | 1.0           | 1.0      |         | 1.0      | 1.0             |         | 1.0           | 1.0       |      | 1.0   | 1.0           |         |
| Lost Time Adjust (s)                   | 0.0           | 0.0      |         |          | 0.0             |         | 0.0           | 0.0       |      |       | 0.0           |         |
| Total Lost Time (s)                    | 4.0           | 4.0      |         |          | 4.0             |         | 4.0           | 4.0       |      |       | 4.0           |         |
| Lead/Lag                               |               |          |         |          |                 |         | Lag           |           |      | Lead  | Lead          |         |
| Lead-Lag Optimize?                     | N             | Marra    |         | Nerre    | Marra           |         | Marra         | C Male    |      |       |               |         |
| Recall Mode                            | None          | None     |         | None     | None            |         | None          | C-Min     |      | C-Min | C-Min         |         |
| Act Effct Green (s)                    | 26.9          | 26.9     |         |          | 26.9            |         | 11.0          | 49.9      |      |       | 34.9          |         |
| Actuated g/C Ratio                     | 0.30          | 0.30     |         |          | 0.30            |         | 0.12          | 0.55      |      |       | 0.39          |         |
| v/c Ratio                              | 0.28          | 0.76     |         |          | 0.93            |         | 0.72          | 0.90      |      |       | 0.73          |         |
| Control Delay                          | 30.5          | 40.8     |         |          | 54.5            |         | 43.1          | 23.9      |      |       | 38.7          |         |
| Queue Delay                            | 0.0           | 0.0      |         |          | 0.0             |         | 0.0           | 0.1       |      |       | 0.0           |         |
| Total Delay                            | 30.5          | 40.8     |         |          | 54.5            |         | 43.1          | 23.9      |      |       | 38.7          |         |

Lanes, Volumes, Timings SLR

| Lane Group     Ø9     Ø10       Lane Configurations     Traffic Volume (vph)       Future Volume (vph) |
|--------------------------------------------------------------------------------------------------------|
| Traffic Volume (vph)                                                                                   |
|                                                                                                        |
|                                                                                                        |
| Ideal Flow (vphpl)                                                                                     |
| Grade (%)                                                                                              |
| Storage Length (ft)                                                                                    |
| Storage Lanes                                                                                          |
|                                                                                                        |
| Taper Length (ft)                                                                                      |
| Lane Util. Factor                                                                                      |
| Ped Bike Factor                                                                                        |
| Frt<br>Elt Distantad                                                                                   |
| Fit Protected                                                                                          |
| Satd. Flow (prot)                                                                                      |
| Flt Permitted                                                                                          |
| Satd. Flow (perm)                                                                                      |
| Right Turn on Red                                                                                      |
| Satd. Flow (RTOR)                                                                                      |
| Link Speed (mph)                                                                                       |
| Link Distance (ft)                                                                                     |
| Travel Time (s)                                                                                        |
| Confl. Peds. (#/hr)                                                                                    |
| Confl. Bikes (#/hr)                                                                                    |
| Peak Hour Factor                                                                                       |
| Heavy Vehicles (%)                                                                                     |
| Adj. Flow (vph)                                                                                        |
| Shared Lane Traffic (%)                                                                                |
| Lane Group Flow (vph)                                                                                  |
| Turn Type                                                                                              |
| Protected Phases 9 10                                                                                  |
| Permitted Phases                                                                                       |
| Detector Phase                                                                                         |
| Switch Phase                                                                                           |
| Minimum Initial (s) 2.0 2.0                                                                            |
| Minimum Split (s) 7.0 4.0                                                                              |
| Total Split (s) 7.0 4.0                                                                                |
| Total Split (%) 8% 4%                                                                                  |
| Yellow Time (s) 2.0 2.0                                                                                |
| All-Red Time (s) 0.0 0.0                                                                               |
| Lost Time Adjust (s)                                                                                   |
| Total Lost Time (s)                                                                                    |
|                                                                                                        |
| Lead/Lag                                                                                               |
| Lead-Lag Optimize?                                                                                     |
| Recall Mode None None                                                                                  |
| Act Effct Green (s)                                                                                    |
| Actuated g/C Ratio                                                                                     |
| v/c Ratio                                                                                              |
| Control Delay                                                                                          |
| Queue Delay                                                                                            |
| Total Delay                                                                                            |

#### New Haven Two-Way Study 1: Church Street & Chapel Street

| Lane Group         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT           LOS         C         D         D         D         C         D         D         Approach Delay         39.9         54.5         27.0         38.7           Approach LOS         D         D         C         D         C         D           Stops (vph)         25         257         429         104         497         220           Fuel Used(gal)         0         4         9         2         7         4           CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0         0           Queue Length 50th (ft)         15         175         155         78         399         155           Dueue Length 95th (ft)         40         266         #245         m83         m#417         #303           Intermal Lin                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach Delay         39.9         54.5         27.0         38.7           Approach LOS         D         D         C         D           Stops (vph)         25         257         429         104         497         220           Fuel Used(gal)         0         4         9         2         7         4           CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0           Queue Length 50th (ft)         15         175         155         78         399         155           Queue Length 95th (ft)         40         256         #245         m83         m#417         #303           Internal Link Dist (ft)         333         396         442         396         10           Spillback Cap Reductn         0         0         0         0         0         0         0         0                                       |
| Approach LOS         D         D         C         D           Stops (vph)         25         257         429         104         497         220           Fuel Used(gal)         0         4         9         2         7         4           CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                              |
| Stops (vph)         25         257         429         104         497         220           Fuel Used(gal)         0         4         9         2         7         4           CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0           Queue Length 50th (ft)         15         175         155         78         399         155           Queue Length 95th (ft)         40         256         #245         m83         m#417         #303           Internal Link Dist (ft)         333         396         442         396           Turn Bay Length (ft)         50         75         5         5           Base Capacity (vph)         131         474         619         183         750         407           Spillback Cap Reductn         0         0         0         0         0                                   |
| Fuel Used(gal)         0         4         9         2         7         4           CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0           Queue Length 50th (ft)         15         175         155         78         399         155           Queue Length 95th (ft)         40         256         #245         m83         m#417         #303           Internal Link Dist (ft)         333         396         442         396           Turn Bay Length (ft)         50         75         5         8           Base Capacity (vph)         131         474         619         183         750         407           Spillback Cap Reductn         0         0         0         0         0         0         0           Spillback Cap Reductn         0         0         0         0                                    |
| CO Emissions (g/hr)         27         313         628         134         517         287           NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         13         14         14         15         15         15         15         15         15         15         15         15                                                             |
| NOx Emissions (g/hr)         5         61         122         26         101         56           VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                          |
| VOC Emissions (g/hr)         6         73         146         31         120         67           Dilemma Vehicles (#)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                                       |
| Dilemma Vehicles (#)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                |
| Queue Length 50th (ft)         15         175         155         78         399         155           Queue Length 95th (ft)         40         256         #245         m83         m#417         #303           Internal Link Dist (ft)         333         396         442         396           Turn Bay Length (ft)         50         75         75         75           Base Capacity (vph)         131         474         619         183         750         407           Starvation Cap Reductn         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                |
| Queue Length 95th (ft)         40         256         #245         m83         m#417         #303           Internal Link Dist (ft)         333         396         442         396           Turn Bay Length (ft)         50         75         75           Base Capacity (vph)         131         474         619         183         750         407           Starvation Cap Reductn         0         0         0         1         0         0         0         1         0           Spillback Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<                                                 |
| Internal Link Dist (ft)         333         396         442         396           Turn Bay Length (ft)         50         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         75         76         75         76         75         76         75         75         76         76         75         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         76         77         76         76         7                          |
| Turn Bay Length (ft)         50         75           Base Capacity (vph)         131         474         619         183         750         407           Starvation Cap Reductn         0         0         0         1         0           Spillback Cap Reductn         0         0         0         0         0         0           Storage Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                       |
| Base Capacity (vph)         131         474         619         183         750         407           Starvation Cap Reductn         0         0         0         0         1         0           Spillback Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                          |
| Starvation Cap Reductn         0         0         0         0         1         0           Spillback Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                            |
| Spillback Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                               |
| Storage Cap Reductn         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                 |
| Reduced v/c Ratio         0.27         0.73         0.89         0.72         0.91         0.73           Intersection Summary           Area Type:         CBD         CB         CB <t< td=""></t<> |
| Intersection Summary<br>Area Type: CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Area Type: CBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cycle Length: 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Actuated Cycle Length: 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Offset: 4 (4%), Referenced to phase 4:NBT and 8:SBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Natural Cycle: 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Control Type: Actuated-Coordinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maximum v/c Ratio: 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Intersection Signal Delay: 38.5 Intersection LOS: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Intersection Capacity Utilization 89.8% ICU Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| # 95th percentile volume exceeds capacity, queue may be longer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Queue shown is maximum after two cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| m Volume for 95th percentile queue is metered by upstream signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Splits and Phases: 1: Church Street & Chapel Street

| Splits and | Filases. T. Church Sheet & Chapel Sheet |          |            |             |
|------------|-----------------------------------------|----------|------------|-------------|
| ₩ø9        | <b>₩</b> Ø2                             | <u>}</u> | Ø10 Ø4 (R) |             |
| 7 s        | 32 s                                    | 4 s      | 47 s       |             |
|            | A 106                                   |          | Ø8 (R)     | <b>▲</b> Ø7 |
|            | 32 s                                    |          | 32 s       | 15 s        |

## New Haven Two-Way Study 3: College Street & Chapel Street

|                         | ≯     | +     | *    | 4        | ł     | *    | <    | 1    | *    | 1     | Ŧ     | ~    |
|-------------------------|-------|-------|------|----------|-------|------|------|------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL      | WBT   | WBR  | NBL  | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | \$    |      | <u>۲</u> | ef 👘  |      |      |      |      |       | \$    |      |
| Traffic Volume (vph)    | 40    | 225   | 25   | 20       | 320   | 80   | 0    | 0    | 0    | 90    | 210   | 95   |
| Future Volume (vph)     | 40    | 225   | 25   | 20       | 320   | 80   | 0    | 0    | 0    | 90    | 210   | 95   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900 | 1900 | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               |       | -4%   |      |          | 5%    |      |      | -8%  |      |       | 4%    |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.96  |      | 0.87     | 0.94  |      |      |      |      |       | 0.87  |      |
| Frt                     |       | 0.988 |      |          | 0.970 |      |      |      |      |       | 0.968 |      |
| Flt Protected           |       | 0.993 |      | 0.950    |       |      |      |      |      |       | 0.989 |      |
| Satd. Flow (prot)       | 0     | 1610  | 0    | 1501     | 1383  | 0    | 0    | 0    | 0    | 0     | 1356  | 0    |
| Flt Permitted           |       | 0.788 |      | 0.509    |       |      |      |      |      |       | 0.989 |      |
| Satd. Flow (perm)       | 0     | 1263  | 0    | 700      | 1383  | 0    | 0    | 0    | 0    | 0     | 1272  | 0    |
| Right Turn on Red       |       |       | No   |          |       | No   |      |      | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |      |          |       |      |      |      |      |       |       |      |
| Link Speed (mph)        |       | 25    |      |          | 25    |      |      | 25   |      |       | 25    |      |
| Link Distance (ft)      |       | 502   |      |          | 519   |      |      | 547  |      |       | 897   |      |
| Travel Time (s)         |       | 13.7  |      |          | 14.2  |      |      | 14.9 |      |       | 24.5  |      |
| Confl. Peds. (#/hr)     | 118   |       | 118  | 118      |       | 118  |      |      |      | 118   |       | 121  |
| Confl. Bikes (#/hr)     |       |       | 10   |          |       | 10   |      |      |      |       |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.80     | 0.80  | 0.80 | 0.25 | 0.25 | 0.25 | 0.88  | 0.88  | 0.88 |
| Heavy Vehicles (%)      | 0%    | 0%    | 2%   | 2%       | 7%    | 4%   | 2%   | 2%   | 0%   | 22%   | 2%    | 0%   |
| Adj. Flow (vph)         | 43    | 245   | 27   | 25       | 400   | 100  | 0    | 0    | 0    | 102   | 239   | 108  |
| Shared Lane Traffic (%) |       |       |      |          |       |      |      |      |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 315   | 0    | 25       | 500   | 0    | 0    | 0    | 0    | 0     | 449   | 0    |
| Turn Type               | Perm  | NA    |      | Perm     | NA    |      |      |      |      | Perm  | NA    |      |
| Protected Phases        |       | 6     |      |          | 2     |      |      |      |      |       | 8     |      |
| Permitted Phases        | 6     |       |      | 2        |       |      |      |      |      | 8     |       |      |
| Detector Phase          | 6     | 6     |      | 2        | 2     |      |      |      |      | 8     | 8     |      |
| Switch Phase            |       |       |      |          |       |      |      |      |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 7.0      | 7.0   |      |      |      |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |      | 17.0     | 17.0  |      |      |      |      | 17.0  | 17.0  |      |
| Total Split (s)         | 26.0  | 26.0  |      | 26.0     | 26.0  |      |      |      |      | 26.0  | 26.0  |      |
| Total Split (%)         | 43.3% | 43.3% |      | 43.3%    | 43.3% |      |      |      |      | 43.3% | 43.3% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0      | 3.0   |      |      |      |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0      | 1.0   |      |      |      |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |      | 0.0      | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |      | 4.0      | 4.0   |      |      |      |      |       | 4.0   |      |
| Lead/Lag                |       |       |      |          |       |      |      |      |      |       |       |      |
| Lead-Lag Optimize?      |       |       |      |          |       |      |      |      |      |       |       |      |
| Recall Mode             | C-Min | C-Min |      | C-Min    | C-Min |      |      |      |      | None  | None  |      |
| Act Effct Green (s)     |       | 23.6  |      | 23.6     | 23.6  |      |      |      |      |       | 22.0  |      |
| Actuated g/C Ratio      |       | 0.39  |      | 0.39     | 0.39  |      |      |      |      |       | 0.37  |      |
| v/c Ratio               |       | 0.63  |      | 0.09     | 0.92  |      |      |      |      |       | 0.96  |      |
| Control Delay           |       | 23.2  |      | 13.7     | 45.6  |      |      |      |      |       | 56.4  |      |
| Queue Delay             |       | 0.0   |      | 0.0      | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Delay             |       | 23.2  |      | 13.7     | 45.6  |      |      |      |      |       | 56.4  |      |
| LOS                     |       | С     |      | В        | D     |      |      |      |      |       | E     |      |
| Approach Delay          |       | 23.2  |      |          | 44.0  |      |      |      |      |       | 56.4  |      |
| Approach LOS            |       | С     |      |          | D     |      |      |      |      |       | E     |      |

Lanes, Volumes, Timings SLR

| Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Grade (%) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 2.0 2.0 Minimum Split (s) At.0 At.0 Total Split (s) Total Split (s) Control Delay Queue Delay Total Delay LOS Approach Delay                                                                                                                                                                                                                                                                                                                                                      | Lane Group            | Ø9    | Ø10  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|------|
| Traffic Volume (vph)         Future Volume (vph)         Ideal Flow (vphpl)         Grade (%)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Flt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Stift (%)       4.0         Total Split (%)       7%         Yellow Time (s)       2.0         Lane Group (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       7%         Yellow Time (s)       2.0         Lost Time (s)       2.0 |                       |       |      |
| Future Volume (vph)         Ideal Flow (vphpl)         Grade (%)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Filt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Yellow Time (s)       2.0         Intel Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       2.0         Lane Group Soluti (s)       2.0         Total Split (s)       0.0         Total Split (s)       0.0         Total Split (s)       2.0         All-Red Time (s)       0.0       |                       |       |      |
| Ideal Flow (vphpl)Grade (%)Lane Util. FactorPed Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)4.04.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)2.0All-Red Time (s)2.0All-Red Time (s)2.0All-Red Time (s)2.0Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Grade (%)<br>Lane Util. Factor<br>Ped Bike Factor<br>Frt<br>Fit Protected<br>Satd. Flow (prot)<br>Fit Permitted<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (perm)<br>Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>2.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>Actuated g/C Ratio<br>V/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                         |                       |       |      |
| Lane Util. FactorPed Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (perm)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |       |      |
| Ped Bike FactorFrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)Adl. Split (%)Adl-Red Time (s)Cotal Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeActuated g/C RatioV/c RatioControl DelayOueue DelayTotal DelayLOSApproach DelayLostNeneApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                            |                       |       |      |
| FrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)All-Red Time (s)Cotal Lost Time (s)Cotal Lost Time (s)Cad/LagLead-Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayOueue DelayTotal DelayLoSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Flt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (s)Ad.All-Red Time (s)Cond Lost Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagControl DelayQueue DelayTotal DelayLOSApproach DelayVor RatioControl DelayDetector DelayDetector DelayDosApproach DelayDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0All-Red Time (s)2.0All-Red Time (s)Detector Dime (s)Control DelayDueue DelayControl DelayDueue DelayControl DelayDueue DelayControl DelayDueue DelayControl DelayDueue DelayControl DelayDosDosDetenDetector Delay <t< td=""><td></td><td></td><td></td></t<>                                                                                                                          |                       |       |      |
| Satd. Flow (prot)Fit PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0ZolMinimum Split (s)4.0Total Split (%)7%Yellow Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLost Time (s)Actuated g/C Ratiov/c RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                            |                       |       |      |
| Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Xold Split (s)4.04.0Total Split (%)2.0Adl-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Satd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (s)4.0Total Split (%)Yellow Time (s)2.0All-Red Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |      |
| Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Total Split (s)4.04.0Total Split (s)Time (s)Lang Time (s)Lang Coup Time (s)Lang Coup CoupAdj. Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Split (s)4.0Total Split (s)7%Yellow Time (s)2.02.0All-Red Time (s)Lead/LagLead-Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Satd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Z.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.0Lead/LagLead/LagLead/LagLead/Lag (CratioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayVersite PalaesProtect Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>2.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>Z.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (%)<br>7%<br>Yellow Time (s)<br>2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |      |
| Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zotal Split (s)4.0Total Split (s)4.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)Lead/LagLead/LagLead/LagLead/Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |       |      |
| Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Zotal Split (s)4.0Total Split (s)4.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)Lead/LagLead/LagLead/Lag (charter (s))Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( )                   |       |      |
| Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesPermitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Z.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.0Lead/LagLead/LagLead-Lag Optimize?Recall ModeNoneActuated g/C Ratiov/c RatioControl DelayQueue DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |      |
| Heavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesPermitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Z.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)Lead/LagLead/LagLead/Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected Phases9Poremitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.04.0Total Split (s)4.04.07%Yellow Time (s)2.02.02.0All-Red Time (s)0.0Lead/LagLead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |      |
| Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |       |      |
| Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Turn TypeProtected Phases910Permitted Phases0Detector Phase5Switch Phase2.02.0Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)2.02.0All-Red Time (s)2.02.0Lead-Lag Cptimize?0.00.0Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl Delay00.0LOSApproach Delay0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |      |
| Protected Phases910Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneActuated g/C RatioV/c RatioV/c RatioV/c RatioControl DelayUeue DelayQueue DelayTotal DelayLOSApproach DelayVin Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Group Flow (vph) |       |      |
| Protected Phases910Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneActuated g/C RatioV/c RatioV/c RatioV/c RatioControl DelayUeue DelayQueue DelayTotal DelayLOSApproach DelayVin Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| Detector Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (%) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 9     | 10   |
| Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Permitted Phases      |       |      |
| Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)0.00.0Total Lost Time (s)2.02.0Lead/Lag2.02.0Lead-Lag Optimize?2.0Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl DelayQueue Delay1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |       |      |
| Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 2.0   | 2.0  |
| Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Qptimize?Lead-Lag Optimize?Recall ModeNoneNoneActuated g/C RatioV/c RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |      |
| Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yellow Time (s)       |       |      |
| Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |      |
| Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 0.0   | 0.0  |
| Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |       |      |
| Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |       |      |
| Recall ModeNoneNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |      |
| Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | Nono  | Nono |
| Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | NOLIG | None |
| v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |       |      |
| Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| Queue Delay<br>Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |       |      |
| Total Delay<br>LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |       |      |
| LOS<br>Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |       |      |
| Approach Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |       |      |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |       |      |
| , pp. 53001 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approach LOS          |       |      |

# New Haven Two-Way Study 3: College Street & Chapel Street

|                                   | ٨           | -          | $\mathbf{r}$ | 1           | +          | ×          | •   | 1   | 1   | 1   | ţ    | ~   |
|-----------------------------------|-------------|------------|--------------|-------------|------------|------------|-----|-----|-----|-----|------|-----|
| Lane Group                        | EBL         | EBT        | EBR          | WBL         | WBT        | WBR        | NBL | NBT | NBR | SBL | SBT  | SBR |
| Stops (vph)                       |             | 230        |              | 16          | 310        |            |     |     |     |     | 315  |     |
| Fuel Used(gal)                    |             | 3          |              | 0           | 7          |            |     |     |     |     | 9    |     |
| CO Emissions (g/hr)               |             | 244        |              | 14          | 466        |            |     |     |     |     | 613  |     |
| NOx Emissions (g/hr)              |             | 48         |              | 3           | 91         |            |     |     |     |     | 119  |     |
| VOC Emissions (g/hr)              |             | 57         |              | 3           | 108        |            |     |     |     |     | 142  |     |
| Dilemma Vehicles (#)              |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Queue Length 50th (ft)            |             | 93         |              | 6           | 174        |            |     |     |     |     | 154  |     |
| Queue Length 95th (ft)            |             | #199       |              | 18          | #292       |            |     |     |     |     | #311 |     |
| Internal Link Dist (ft)           |             | 422        |              |             | 439        |            |     | 467 |     |     | 817  |     |
| Turn Bay Length (ft)              |             |            |              |             |            |            |     |     |     |     |      |     |
| Base Capacity (vph)               |             | 497        |              | 275         | 544        |            |     |     |     |     | 466  |     |
| Starvation Cap Reductn            |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Spillback Cap Reductn             |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Storage Cap Reductn               |             | 0          |              | 0           | 0          |            |     |     |     |     | 0    |     |
| Reduced v/c Ratio                 |             | 0.63       |              | 0.09        | 0.92       |            |     |     |     |     | 0.96 |     |
| Intersection Summary              |             |            |              |             |            |            |     |     |     |     |      |     |
| J J                               | CBD         |            |              |             |            |            |     |     |     |     |      |     |
| Cycle Length: 60                  |             |            |              |             |            |            |     |     |     |     |      |     |
| Actuated Cycle Length: 60         |             |            |              |             |            |            |     |     |     |     |      |     |
| Offset: 0 (0%), Referenced t      | o phase 2:\ | NBTL an    | d 6:EBTI     | _, Start of | Yellow     |            |     |     |     |     |      |     |
| Natural Cycle: 80                 |             |            |              |             |            |            |     |     |     |     |      |     |
| Control Type: Actuated-Cool       | rdinated    |            |              |             |            |            |     |     |     |     |      |     |
| Maximum v/c Ratio: 0.96           |             |            |              |             |            |            |     |     |     |     |      |     |
| Intersection Signal Delay: 43     |             |            |              |             | tersectior |            |     |     |     |     |      |     |
| Intersection Capacity Utilization | tion 79.1%  |            |              | IC          | U Level o  | of Service | D   |     |     |     |      |     |
| Analysis Period (min) 15          |             |            |              |             |            |            |     |     |     |     |      |     |
| # 95th percentile volume e        |             | <i>y</i> 1 | ieue may     | be longe    | er.        |            |     |     |     |     |      |     |
| Queue shown is maximu             | m after two | cycles.    |              |             |            |            |     |     |     |     |      |     |
|                                   |             |            |              |             |            |            |     |     |     |     |      |     |

Splits and Phases: 3: College Street & Chapel Street



#### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                         | ≯     | +     | $\mathbf{F}$ | 4     | +     | •     | •     | t     | 1    | *    | ţ    | ~    |
|-------------------------|-------|-------|--------------|-------|-------|-------|-------|-------|------|------|------|------|
| Lane Group              | EBL   | EBT   | EBR          | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations     |       | \$    |              |       | ę     | 1     |       | 4î b  |      |      |      |      |
| Traffic Volume (vph)    | 100   | 300   | 25           | 25    | 340   | 260   | 185   | 390   | 50   | 0    | 0    | 0    |
| Future Volume (vph)     | 100   | 300   | 25           | 25    | 340   | 260   | 185   | 390   | 50   | 0    | 0    | 0    |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900  | 1900  | 1900  | 1900  | 1900  | 1900 | 1900 | 1900 | 1900 |
| Grade (%)               |       | -5%   |              |       | -4%   |       |       | -10%  |      |      | 5%   |      |
| Storage Length (ft)     | 50    |       | 0            | 50    |       | 100   | 125   |       | 0    | 0    |      | 0    |
| Storage Lanes           | 0     |       | 0            | 0     |       | 1     | 1     |       | 0    | 0    |      | 0    |
| Taper Length (ft)       | 25    |       |              | 25    |       |       | 25    |       |      | 25   |      |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00  | 0.95  | 0.95  | 0.95 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor         |       | 0.97  |              |       | 0.99  | 0.75  |       | 0.91  |      |      |      |      |
| Frt                     |       | 0.992 |              |       |       | 0.850 |       | 0.988 |      |      |      |      |
| Flt Protected           |       | 0.988 |              |       | 0.997 |       |       | 0.985 |      |      |      |      |
| Satd. Flow (prot)       | 0     | 1603  | 0            | 0     | 1618  | 1419  | 0     | 3016  | 0    | 0    | 0    | 0    |
| Flt Permitted           |       | 0.723 |              |       | 0.955 |       |       | 0.985 |      |      |      |      |
| Satd. Flow (perm)       | 0     | 1155  | 0            | 0     | 1534  | 1071  | 0     | 2802  | 0    | 0    | 0    | 0    |
| Right Turn on Red       |       |       | No           |       |       | No    |       |       | No   |      |      | No   |
| Satd. Flow (RTOR)       |       |       |              |       |       |       |       |       |      |      |      |      |
| Link Speed (mph)        |       | 25    |              |       | 25    |       |       | 25    |      |      | 25   |      |
| Link Distance (ft)      |       | 413   |              |       | 498   |       |       | 404   |      |      | 482  |      |
| Travel Time (s)         |       | 11.3  |              |       | 13.6  |       |       | 11.0  |      |      | 13.1 |      |
| Confl. Peds. (#/hr)     | 112   |       | 112          | 183   |       | 183   | 112   |       | 112  |      |      |      |
| Confl. Bikes (#/hr)     |       |       | 10           |       |       | 10    |       |       | 10   |      |      | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92         | 0.87  | 0.87  | 0.87  | 0.87  | 0.87  | 0.87 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%           | 2%    | 4%    | 1%    | 5%    | 4%    | 2%   | 2%   | 2%   | 2%   |
| Adj. Flow (vph)         | 109   | 326   | 27           | 29    | 391   | 299   | 213   | 448   | 57   | 0    | 0    | 0    |
| Shared Lane Traffic (%) |       |       |              |       |       |       |       |       |      |      |      |      |
| Lane Group Flow (vph)   | 0     | 462   | 0            | 0     | 420   | 299   | 0     | 718   | 0    | 0    | 0    | 0    |
| Turn Type               | Perm  | NA    |              | Perm  | NA    | Perm  | Split | NA    |      |      |      |      |
| Protected Phases        |       | 6     |              |       | 2     |       | 4     | 4     |      |      |      |      |
| Permitted Phases        | 6     |       |              | 2     |       | 2     |       |       |      |      |      |      |
| Detector Phase          | 6     | 6     |              | 2     | 2     | 2     | 4     | 4     |      |      |      |      |
| Switch Phase            |       |       |              |       |       |       |       |       |      |      |      |      |
| Minimum Initial (s)     | 7.0   | 7.0   |              | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   |      |      |      |      |
| Minimum Split (s)       | 18.0  | 18.0  |              | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  |      |      |      |      |
| Total Split (s)         | 34.0  | 34.0  |              | 34.0  | 34.0  | 34.0  | 18.0  | 18.0  |      |      |      |      |
| Total Split (%)         | 56.7% | 56.7% |              | 56.7% | 56.7% | 56.7% | 30.0% | 30.0% |      |      |      |      |
| Yellow Time (s)         | 3.0   | 3.0   |              | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |      |      |      |      |
| All-Red Time (s)        | 1.0   | 1.0   |              | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |      |      |      |      |
| Lost Time Adjust (s)    |       | 0.0   |              |       | 0.0   | 0.0   |       | 0.0   |      |      |      |      |
| Total Lost Time (s)     |       | 4.0   |              |       | 4.0   | 4.0   |       | 4.0   |      |      |      |      |
| Lead/Lag                |       |       |              |       |       |       |       |       |      |      |      |      |
| Lead-Lag Optimize?      |       |       |              |       |       |       |       |       |      |      |      |      |
| Recall Mode             | None  | None  |              | None  | None  | None  | C-Min | C-Min |      |      |      |      |
| Act Effct Green (s)     |       | 25.7  |              |       | 25.7  | 25.7  |       | 23.1  |      |      |      |      |
| Actuated g/C Ratio      |       | 0.43  |              |       | 0.43  | 0.43  |       | 0.38  |      |      |      |      |
| v/c Ratio               |       | 0.93  |              |       | 0.64  | 0.65  |       | 0.62  |      |      |      |      |
| Control Delay           |       | 44.2  |              |       | 17.6  | 20.1  |       | 23.6  |      |      |      |      |
| Queue Delay             |       | 0.0   |              |       | 0.0   | 0.0   |       | 0.0   |      |      |      |      |
| Total Delay             |       | 44.2  |              |       | 17.6  | 20.1  |       | 23.6  |      |      |      |      |

Lanes, Volumes, Timings SLR

| Lane Group                                  | Ø9   | Ø10  |  |
|---------------------------------------------|------|------|--|
| Lane Configurations                         |      |      |  |
| Traffic Volume (vph)                        |      |      |  |
| Future Volume (vph)                         |      |      |  |
| Ideal Flow (vphpl)                          |      |      |  |
| Grade (%)                                   |      |      |  |
| Storage Length (ft)                         |      |      |  |
| Storage Lanes                               |      |      |  |
| Taper Length (ft)                           |      |      |  |
| Lane Util. Factor                           |      |      |  |
| Ped Bike Factor                             |      |      |  |
| Frt                                         |      |      |  |
| Flt Protected                               |      |      |  |
| Satd. Flow (prot)                           |      |      |  |
| Flt Permitted                               |      |      |  |
| Satd. Flow (perm)                           |      |      |  |
| Right Turn on Red                           |      |      |  |
| Satd. Flow (RTOR)                           |      |      |  |
| Link Speed (mph)                            |      |      |  |
| Link Distance (ft)                          |      |      |  |
| Travel Time (s)                             |      |      |  |
| Confl. Peds. (#/hr)                         |      |      |  |
| Confl. Bikes (#/hr)                         |      |      |  |
| Peak Hour Factor                            |      |      |  |
| Heavy Vehicles (%)                          |      |      |  |
| Adj. Flow (vph)                             |      |      |  |
| Shared Lane Traffic (%)                     |      |      |  |
| Lane Group Flow (vph)                       |      |      |  |
| Turn Type                                   |      |      |  |
| Protected Phases                            | 9    | 10   |  |
| Permitted Phases                            |      |      |  |
| Detector Phase                              |      |      |  |
| Switch Phase                                |      |      |  |
| Minimum Initial (s)                         | 2.0  | 2.0  |  |
| Minimum Split (s)                           | 4.0  | 4.0  |  |
| Total Split (s)                             | 4.0  | 4.0  |  |
| Total Split (%)                             | 7%   | 7%   |  |
| Yellow Time (s)                             | 2.0  | 2.0  |  |
| All-Red Time (s)                            | 0.0  | 0.0  |  |
| Lost Time Adjust (s)                        |      |      |  |
| Total Lost Time (s)                         |      |      |  |
| Lead/Lag                                    |      |      |  |
| Lead-Lag Optimize?                          |      |      |  |
| Recall Mode                                 | None | None |  |
| Act Effct Green (s)                         |      |      |  |
| Actuated g/C Ratio                          |      |      |  |
| v/c Ratio                                   |      |      |  |
|                                             |      |      |  |
| Control Delay                               |      |      |  |
| Control Delay<br>Queue Delay<br>Total Delay |      |      |  |

#### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                                 | ≯             | -        | $\mathbf{r}$ | 4        | -          | *          | 1   | 1    | 1   | $\mathbf{b}$ | Ļ   | ~   |
|---------------------------------|---------------|----------|--------------|----------|------------|------------|-----|------|-----|--------------|-----|-----|
| Lane Group                      | EBL           | EBT      | EBR          | WBL      | WBT        | WBR        | NBL | NBT  | NBR | SBL          | SBT | SBF |
| LOS                             |               | D        |              |          | В          | С          |     | С    |     |              |     |     |
| Approach Delay                  |               | 44.2     |              |          | 18.6       |            |     | 23.6 |     |              |     |     |
| Approach LOS                    |               | D        |              |          | В          |            |     | С    |     |              |     |     |
| Stops (vph)                     |               | 356      |              |          | 262        | 192        |     | 418  |     |              |     |     |
| Fuel Used(gal)                  |               | 7        |              |          | 4          | 3          |     | 7    |     |              |     |     |
| CO Emissions (g/hr)             |               | 467      |              |          | 270        | 203        |     | 472  |     |              |     |     |
| NOx Emissions (g/hr)            |               | 91       |              |          | 53         | 39         |     | 92   |     |              |     |     |
| VOC Emissions (g/hr)            |               | 108      |              |          | 63         | 47         |     | 109  |     |              |     |     |
| Dilemma Vehicles (#)            |               | 0        |              |          | 0          | 0          |     | 0    |     |              |     |     |
| Queue Length 50th (ft)          |               | 143      |              |          | 107        | 77         |     | 101  |     |              |     |     |
| Queue Length 95th (ft)          |               | #291     |              |          | 161        | 131        |     | #233 |     |              |     |     |
| Internal Link Dist (ft)         |               | 333      |              |          | 418        |            |     | 324  |     |              | 402 |     |
| Turn Bay Length (ft)            |               |          |              |          |            | 100        |     |      |     |              |     |     |
| Base Capacity (vph)             |               | 577      |              |          | 767        | 535        |     | 1159 |     |              |     |     |
| Starvation Cap Reductn          |               | 0        |              |          | 0          | 0          |     | 0    |     |              |     |     |
| Spillback Cap Reductn           |               | 0        |              |          | 0          | 0          |     | 0    |     |              |     |     |
| Storage Cap Reductn             |               | 0        |              |          | 0          | 0          |     | 0    |     |              |     |     |
| Reduced v/c Ratio               |               | 0.80     |              |          | 0.55       | 0.56       |     | 0.62 |     |              |     |     |
| Intersection Summary            |               |          |              |          |            |            |     |      |     |              |     |     |
| )                               | CBD           |          |              |          |            |            |     |      |     |              |     |     |
| Cycle Length: 60                |               |          |              |          |            |            |     |      |     |              |     |     |
| Actuated Cycle Length: 60       |               |          |              |          |            |            |     |      |     |              |     |     |
| Offset: 50 (83%), Referenced    | d to phase 4  | :NBTL, S | Start of Y   | ellow    |            |            |     |      |     |              |     |     |
| Natural Cycle: 60               |               |          |              |          |            |            |     |      |     |              |     |     |
| Control Type: Actuated-Coor     | dinated       |          |              |          |            |            |     |      |     |              |     |     |
| Maximum v/c Ratio: 0.93         | _             |          |              |          |            |            |     |      |     |              |     |     |
| Intersection Signal Delay: 26   |               |          |              |          | tersection |            | _   |      |     |              |     |     |
| Intersection Capacity Utilizati | ion 81.4%     |          |              | IC       | U Level c  | of Service | D   |      |     |              |     |     |
| Analysis Period (min) 15        |               |          |              |          |            |            |     |      |     |              |     |     |
| # 95th percentile volume ex     |               |          | eue may      | be longe | r.         |            |     |      |     |              |     |     |
| Queue shown is maximun          | n after two c | ycles.   |              |          |            |            |     |      |     |              |     |     |

Splits and Phases: 11: Church Street/Whitney Avenue & Grove Street

| ₩ <b>1</b> @9 | ∲<br>Ø2      | H <sub>Ø1</sub> | 0 🔨 Ø4 (R) | Ţ |
|---------------|--------------|-----------------|------------|---|
| 4 s 🔰         | 34 s         | 4 s             | 18 s       |   |
|               | <u>24</u> 06 |                 |            |   |

| Lane Group              | Ø9 | Ø10 |  |  |
|-------------------------|----|-----|--|--|
| LOS                     |    |     |  |  |
| Approach Delay          |    |     |  |  |
| Approach LOS            |    |     |  |  |
| Stops (vph)             |    |     |  |  |
| Fuel Used(gal)          |    |     |  |  |
| CO Emissions (g/hr)     |    |     |  |  |
| NOx Emissions (g/hr)    |    |     |  |  |
| VOC Emissions (g/hr)    |    |     |  |  |
| Dilemma Vehicles (#)    |    |     |  |  |
| Queue Length 50th (ft)  |    |     |  |  |
| Queue Length 95th (ft)  |    |     |  |  |
| Internal Link Dist (ft) |    |     |  |  |
| Turn Bay Length (ft)    |    |     |  |  |
| Base Capacity (vph)     |    |     |  |  |
| Starvation Cap Reductn  |    |     |  |  |
| Spillback Cap Reductn   |    |     |  |  |
| Storage Cap Reductn     |    |     |  |  |
| Reduced v/c Ratio       |    |     |  |  |
| Intersection Summary    |    |     |  |  |

## New Haven Two-Way Study 18: Park Street & Chapel Street

|                                   | ٦          | -    | $\mathbf{F}$ | ∢    | ←        | •          | 1    | Ť    | 1    | 5    | Ŧ     | ~    |
|-----------------------------------|------------|------|--------------|------|----------|------------|------|------|------|------|-------|------|
| Lane Group                        | EBL        | EBT  | EBR          | WBL  | WBT      | WBR        | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations               |            |      |              |      | र्भ      |            |      |      |      |      | 4     |      |
| Traffic Volume (vph)              | 0          | 0    | 0            | 80   | 350      | 0          | 0    | 0    | 0    | 25   | 220   | 65   |
| Future Volume (vph)               | 0          | 0    | 0            | 80   | 350      | 0          | 0    | 0    | 0    | 25   | 220   | 65   |
| Ideal Flow (vphpl)                | 1900       | 1900 | 1900         | 1900 | 1900     | 1900       | 1900 | 1900 | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor                 | 1.00       | 1.00 | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor                   |            |      |              |      |          |            |      |      |      |      |       |      |
| Frt                               |            |      |              |      |          |            |      |      |      |      | 0.972 |      |
| Flt Protected                     |            |      |              |      | 0.991    |            |      |      |      |      | 0.996 |      |
| Satd. Flow (prot)                 | 0          | 0    | 0            | 0    | 1774     | 0          | 0    | 0    | 0    | 0    | 1759  | 0    |
| Flt Permitted                     |            |      |              |      | 0.991    |            |      |      |      |      | 0.996 |      |
| Satd. Flow (perm)                 | 0          | 0    | 0            | 0    | 1774     | 0          | 0    | 0    | 0    | 0    | 1759  | 0    |
| Link Speed (mph)                  |            | 25   |              |      | 25       |            |      | 25   |      |      | 25    |      |
| Link Distance (ft)                |            | 552  |              |      | 511      |            |      | 389  |      |      | 432   |      |
| Travel Time (s)                   |            | 15.1 |              |      | 13.9     |            |      | 10.6 |      |      | 11.8  |      |
| Confl. Peds. (#/hr)               |            |      |              | 72   |          |            |      |      |      | 18   |       | 18   |
| Confl. Bikes (#/hr)               |            |      |              |      |          | 10         |      |      |      |      |       | 10   |
| Peak Hour Factor                  | 0.92       | 0.92 | 0.92         | 0.72 | 0.72     | 0.72       | 0.92 | 0.92 | 0.92 | 0.71 | 0.71  | 0.71 |
| Heavy Vehicles (%)                | 2%         | 0%   | 2%           | 1%   | 3%       | 50%        | 2%   | 0%   | 0%   | 2%   | 1%    | 1%   |
| Adj. Flow (vph)                   | 0          | 0    | 0            | 111  | 486      | 0          | 0    | 0    | 0    | 35   | 310   | 92   |
| Shared Lane Traffic (%)           |            |      |              |      |          |            |      |      |      |      |       |      |
| Lane Group Flow (vph)             | 0          | 0    | 0            | 0    | 597      | 0          | 0    | 0    | 0    | 0    | 437   | 0    |
| Sign Control                      |            | Stop |              |      | Stop     |            |      | Stop |      |      | Stop  |      |
| Intersection Summary              |            |      |              |      |          |            |      |      |      |      |       |      |
| Area Type: 0                      | Other      |      |              |      |          |            |      |      |      |      |       |      |
| Control Type: Unsignalized        |            |      |              |      |          |            |      |      |      |      |       |      |
| Intersection Capacity Utilization | tion 46.8% |      |              | IC   | CU Level | of Service | A    |      |      |      |       |      |
| Analysis Period (min) 15          |            |      |              |      |          |            |      |      |      |      |       |      |

# Intersection Delay, s/veh 26.9 Intersection LOS D

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | र्स  |      |      |      |      |      | \$   |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 80   | 350  | 0    | 0    | 0    | 0    | 25   | 220  | 65   |
| Future Vol, veh/h          | 0    | 0    | 0    | 80   | 350  | 0    | 0    | 0    | 0    | 25   | 220  | 65   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.72 | 0.72 | 0.72 | 0.92 | 0.92 | 0.92 | 0.71 | 0.71 | 0.71 |
| Heavy Vehicles, %          | 2    | 0    | 2    | 1    | 3    | 50   | 2    | 0    | 0    | 2    | 1    | 1    |
| Mvmt Flow                  | 0    | 0    | 0    | 111  | 486  | 0    | 0    | 0    | 0    | 35   | 310  | 92   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      |      |      |      | SB   |      |      |
| Opposing Approach          |      |      |      |      |      |      |      |      |      |      |      |      |
| Opposing Lanes             |      |      |      | 0    |      |      |      |      |      | 0    |      |      |
| Conflicting Approach Left  |      |      |      |      |      |      |      |      |      | WB   |      |      |
| Conflicting Lanes Left     |      |      |      | 0    |      |      |      |      |      | 1    |      |      |
| Conflicting Approach Right |      |      |      | SB   |      |      |      |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      |      |      |      | 0    |      |      |
| HCM Control Delay          |      |      |      | 32.8 |      |      |      |      |      | 18.8 |      |      |
| HCM LOS                    |      |      |      | D    |      |      |      |      |      | С    |      |      |

| Lane                   | WBLn1 | SBLn1 |
|------------------------|-------|-------|
| Vol Left, %            | 19%   | 8%    |
| Vol Thru, %            | 81%   | 71%   |
| Vol Right, %           | 0%    | 21%   |
| Sign Control           | Stop  | Stop  |
| Traffic Vol by Lane    | 430   | 310   |
| LT Vol                 | 80    | 25    |
| Through Vol            | 350   | 220   |
| RT Vol                 | 0     | 65    |
| Lane Flow Rate         | 597   | 437   |
| Geometry Grp           | 1     | 1     |
| Degree of Util (X)     | 0.868 | 0.666 |
| Departure Headway (Hd) | 5.232 | 5.49  |
| Convergence, Y/N       | Yes   | Yes   |
| Сар                    | 693   | 659   |
| Service Time           | 3.264 | 3.529 |
| HCM Lane V/C Ratio     | 0.861 | 0.663 |
| HCM Control Delay      | 32.8  | 18.8  |
| HCM Lane LOS           | D     | С     |
| HCM 95th-tile Q        | 10.3  | 5     |

#### New Haven Two-Way Study 22: York Street & Tower Parkway/Grove Street

| ZZ. TUR Sheel a                     |             | antway      |              | 0.000       | 01            |            |       |             |      |             |             |      |
|-------------------------------------|-------------|-------------|--------------|-------------|---------------|------------|-------|-------------|------|-------------|-------------|------|
|                                     | ≯           | -           | $\mathbf{F}$ | 4           | +             | •          | •     | t           | 1    | 1           | Ļ           | ~    |
| Lane Group                          | EBL         | EBT         | EBR          | WBL         | WBT           | WBR        | NBL   | NBT         | NBR  | SBL         | SBT         | SBR  |
| Lane Configurations                 |             | \$          |              |             | \$            |            |       | \$          |      |             | \$          |      |
| Traffic Volume (vph)                | 25          | 400         | 25           | 25          | 400           | 80         | 25    | 155         | 25   | 50          | 100         | 20   |
| Future Volume (vph)                 | 25          | 400         | 25           | 25          | 400           | 80         | 25    | 155         | 25   | 50          | 100         | 20   |
| Ideal Flow (vphpl)                  | 1900        | 1900        | 1900         | 1900        | 1900          | 1900       | 1900  | 1900        | 1900 | 1900        | 1900        | 1900 |
| Lane Util. Factor                   | 1.00        | 1.00        | 1.00         | 1.00        | 1.00          | 1.00       | 1.00  | 1.00        | 1.00 | 1.00        | 1.00        | 1.00 |
| Ped Bike Factor                     |             | 0.98        |              |             | 0.98          |            |       | 0.95        |      |             | 0.97        |      |
| Frt                                 |             | 0.993       |              |             | 0.979         |            |       | 0.984       |      |             | 0.984       |      |
| Flt Protected                       |             | 0.997       |              |             | 0.998         |            |       | 0.994       |      |             | 0.986       |      |
| Satd. Flow (prot)                   | 0           | 1758        | 0            | 0           | 1745          | 0          | 0     | 1732        | 0    | 0           | 1727        | 0    |
| Flt Permitted                       | Ŭ           | 0.962       | Ű            | Ű           | 0.969         | Ŭ          | Ŭ     | 0.951       | Ű    | Ŭ           | 0.802       | Ŭ    |
| Satd. Flow (perm)                   | 0           | 1694        | 0            | 0           | 1688          | 0          | 0     | 1630        | 0    | 0           | 1384        | 0    |
| Right Turn on Red                   | U           | 1074        | No           | U           | 1000          | No         | U     | 1050        | No   | 0           | 1304        | No   |
| Satd. Flow (RTOR)                   |             |             | NO           |             |               | NO         |       |             | NO   |             |             |      |
| Link Speed (mph)                    |             | 25          |              |             | 25            |            |       | 25          |      |             | 25          |      |
| Link Distance (ft)                  |             | 685         |              |             | 397           |            |       | 298         |      |             | 207         |      |
| Travel Time (s)                     |             | 18.7        |              |             | 10.8          |            |       | 8.1         |      |             | 5.6         |      |
| Confl. Peds. (#/hr)                 | 39          | 10.7        | 101          | 101         | 10.0          | 39         | 101   | 0.1         | 101  | 39          | 5.0         | 39   |
| Confl. Bikes (#/hr)                 | 37          |             | 10           | 101         |               | 10         | 101   |             | 101  | 37          |             | 10   |
| Peak Hour Factor                    | 0.92        | 0.92        | 0.92         | 0.92        | 0.92          | 0.92       | 0.86  | 0.86        | 0.86 | 0.71        | 0.71        | 0.71 |
| Heavy Vehicles (%)                  | 2%          | 2%          | 2%           | 0.92        | 0.92          | 0.92<br>1% | 2%    | 0.80        | 2%   | 2%          | 2%          | 0.71 |
|                                     |             |             | 2%           |             |               |            |       |             |      | 2%<br>70    |             |      |
| Adj. Flow (vph)                     | 27          | 435         | 21           | 27          | 435           | 87         | 29    | 180         | 29   | 70          | 141         | 28   |
| Shared Lane Traffic (%)             | 0           | 400         | 0            | 0           | E 40          | 0          | 0     | 220         | 0    | 0           | 220         | 0    |
| Lane Group Flow (vph)               | 0<br>Dorm   | 489<br>NA   | 0            | 0<br>Dorm   | 549<br>NA     | 0          | 0     | 238<br>NA   | 0    | 0           | 239         | 0    |
| Turn Type<br>Protected Phases       | Perm        |             |              | Perm        |               |            | Perm  |             |      | Perm        | NA          |      |
| Permitted Phases                    | 1           | 6           |              | 2           | 2             |            | 4     | 4           |      | 8           | 8           |      |
|                                     | 6           | /           |              | 2           | C             |            |       | 4           |      |             | 0           |      |
| Detector Phase                      | 6           | 6           |              | Z           | 2             |            | 4     | 4           |      | 8           | 8           |      |
| Switch Phase<br>Minimum Initial (s) | 1.0         | 4.0         |              | 4.0         | 4.0           |            | 4.0   | 10          |      | 4.0         | 4.0         |      |
| 、 <i>, , ,</i>                      | 4.0<br>17.0 | 4.0<br>17.0 |              | 4.0<br>17.0 | 4.0<br>17.0   |            | 4.0   | 4.0<br>17.0 |      | 4.0<br>17.0 | 4.0<br>17.0 |      |
| Minimum Split (s)                   |             |             |              |             |               |            | 17.0  |             |      |             | 22.0        |      |
| Total Split (s)                     | 30.0        | 30.0        |              | 30.0        | 30.0<br>50.0% |            | 22.0  | 22.0        |      | 22.0        |             |      |
| Total Split (%)                     | 50.0%       | 50.0%       |              | 50.0%       |               |            | 36.7% | 36.7%       |      | 36.7%       | 36.7%       |      |
| Yellow Time (s)                     | 3.0         | 3.0         |              | 3.0         | 3.0           |            | 3.0   | 3.0         |      | 3.0         | 3.0         |      |
| All-Red Time (s)                    | 1.0         | 1.0         |              | 1.0         | 1.0           |            | 1.0   | 1.0         |      | 1.0         | 1.0         |      |
| Lost Time Adjust (s)                |             | 0.0         |              |             | 0.0           |            |       | 0.0         |      |             | 0.0         |      |
| Total Lost Time (s)                 |             | 4.0         |              |             | 4.0           |            |       | 4.0         |      |             | 4.0         |      |
| Lead/Lag                            |             |             |              |             |               |            |       |             |      |             |             |      |
| Lead-Lag Optimize?                  | 0.14        | 0.14        |              |             | O Min         |            | Nerre | News        |      | NLava       | Neve        |      |
| Recall Mode                         | C-Min       | C-Min       |              | C-Min       | C-Min         |            | None  | None        |      | None        | None        | _    |
| Act Effct Green (s)                 |             | 34.6        |              |             | 34.6          |            |       | 14.2        |      |             | 14.2        |      |
| Actuated g/C Ratio                  |             | 0.58        |              |             | 0.58          |            |       | 0.24        |      |             | 0.24        |      |
| v/c Ratio                           |             | 0.50        |              |             | 0.56          |            |       | 0.62        |      |             | 0.73        |      |
| Control Delay                       |             | 12.1        |              |             | 13.8          |            |       | 27.2        |      |             | 34.3        | _    |
| Queue Delay                         |             | 0.0         |              |             | 0.0           |            |       | 0.0         |      |             | 0.0         |      |
| Total Delay                         |             | 12.1        |              |             | 13.8          |            |       | 27.2        |      |             | 34.3        | _    |
| LOS                                 |             | В           |              |             | В             |            |       | С           |      |             | С           |      |
| Approach Delay                      |             | 12.1        |              |             | 13.8          |            |       | 27.2        |      |             | 34.3        |      |
| Approach LOS                        |             | В           |              |             | В             |            |       | С           |      |             | С           |      |
| Stops (vph)                         |             | 281         |              |             | 320           |            |       | 171         |      |             | 149         |      |

Lanes, Volumes, Timings SLR

| Lane Configurations Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (mph) Link Distance (ft) Travel Time (s) Confl. Peds. (#/hr) Confl. Bikes (#/hr) Peak Hour Factor Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimun Initial (s) 2.0 Al. ed A.0 Total Split (s) Total Lost Time (s) Lead-Lag Optimize? Recall Mode None None Act Effct Green (s) Actuated g/C Ratio V/C Ratio COS Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lane Group          | Ø9    | Ø10  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|------|
| Traffic Volume (vph)<br>Future Volume (vph)<br>Ideal Flow (vphpl)<br>Lane Util. Factor<br>Ped Bike Factor<br>Frt<br>Flt Protected<br>Satd. Flow (prot)<br>Flt Permitted<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (RTOR)<br>Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Pikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Switch Phase<br>Switch Phase<br>Switch Phase<br>Switch Phase<br>Switch Phase<br>Minimun Initial (s)<br>2.0<br>2.0<br>All-Red Time (s)<br>Confl Lost Time (s)<br>Lane Group Slow (b)<br>Turn Split (s)<br>Total Split (s)<br>Total Lost Time (s)<br>Lane Group Flow (b)<br>Turne (s)<br>Confl Red Time (s)<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       |      |
| Future Volume (vph)         Ideal Flow (vphpl)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Flt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Switch Phase         Minimun Initial (s)       2.0         Suit (%)       7%         Yellow Time (s)       2.0         Iotal Split (%)       7%         Yellow Time (s)       2.0         Lane Group Flow (vph)       5         State Cor Phase       9         Minimun Initial (s)       2.0         Iotal Split (s)       4.0         Total Split (%)       7%         Yellow Time (s)       0.0         Lost Time Adjust (s)       0.0         Iotal Lost Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |       |      |
| Ideal Flow (vphpl)<br>Lane Util. Factor<br>Ped Bike Factor<br>Frt<br>Fit Protected<br>Satd. Flow (prot)<br>Fit Permitted<br>Satd. Flow (perm)<br>Right Turn on Red<br>Satd. Flow (RTOR)<br>Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>Lane Group Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>All-Red Time (s)<br>Land Time (s)<br>Land Time (s)<br>Control Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |       |      |
| Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Flt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Switch Phase         Minimum Initial (s)       2.0         Total Split (s)       4.0         Total Split (s)       0.0         Adi-Red Time (s)       0.0         Lost Time Adjust (s)       7%         Total Lost Time (s)       2.0         Laned Creen (s)       Actuated g/C Ratio         Vc Ratio       Vone         None       None         All-Red Time (s)       0.0         Lost Time Aljust (s)       7%         Actatiod Q/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |       |      |
| Ped Bike FactorFrtFIt ProtectedSatd. Flow (prot)FIt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.0Atl-Red Time (s)2.0Atl-Red Time (s)2.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.0Atl-Red Time (s)2.02.12.12.12.22.3 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       |      |
| FrtFlt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)7%Yellow Time (s)2.0All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLost DelayApproach LOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |       |      |
| Flt ProtectedSatd. Flow (prot)Flt PermittedSatd. Flow (prom)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0All-Red Time (s)Cotal Split (%)Yellow Time (s)2.0All-Red Time (s)Cotal Split (s)Adi Split (s)Atl-Red Time (s)Cotal Lost Time (s)Cotal Lost Time (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |      |
| Satd. Flow (prot)Fit PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (%)Adl. Split (%)Adl-Red Time (s)Cond Lost Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLagLagLagLagLag <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |       |      |
| Flt PermittedSatd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0All-Red Time (s)2.02.0Atl-Red Time (s)2.0Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       |      |
| Satd. Flow (perm)Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (%)Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |      |
| Right Turn on RedSatd. Flow (RTOR)Link Speed (mph)Link Distance (ft)Travel Time (s)Confl. Peds. (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Zond Split (s)4.0Total Split (s)All-Red Time (s)Lead-Lag Optimize?Recall ModeAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |       |      |
| Satd. Flow (RTOR)<br>Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0<br>2.0<br>Minimum Split (s)<br>4.0<br>4.0<br>Total Split (s)<br>7%<br>Yellow Time (s)<br>2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |      |
| Link Speed (mph)<br>Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases 9 10<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 2.0 2.0<br>Control Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |      |
| Link Distance (ft)<br>Travel Time (s)<br>Confl. Peds. (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases 9 10<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (%) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 2.0 2.0<br>All-Red Time (s) 2.0 2.0<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Lost Time (s)<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       |      |
| Travel Time (s)<br>Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Lead/Lag<br>Los Time (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       |      |
| Confl. Peds. (#/hr)<br>Confl. Bikes (#/hr)<br>Peak Hour Factor<br>Heavy Vehicles (%)<br>Adj. Flow (vph)<br>Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |       |      |
| Confl. Bikes (#/hr)Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.0All-Red Time (s)Lead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLead/LagLost Time (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |       |      |
| Peak Hour FactorHeavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (%)7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lead-Lag Optimize?Recall ModeActuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |       |      |
| Heavy Vehicles (%)Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesPermitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0All. Red Time (s)2.0All-Red Time (s)Lead-Lag Optimize?Recall ModeActuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |       |      |
| Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected Phases9Detector PhaseSwitch PhaseMinimum Initial (s)2.02.0Minimum Split (s)4.0Total Split (s)4.04.07%7%Yellow Time (s)2.0Lead-Lag Optimize?Recall ModeNoneActuated g/C Ratiov/c RatioControl DelayQueue DelayLOSApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |       |      |
| Shared Lane Traffic (%)<br>Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (%)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |      |
| Lane Group Flow (vph)<br>Turn Type<br>Protected Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s)<br>2.0 2.0<br>Minimum Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>4.0 4.0<br>Total Split (s)<br>7% 7%<br>Yellow Time (s)<br>2.0 2.0<br>All-Red Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode<br>None<br>None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |       |      |
| Turn TypeProtected Phases910Permitted Phases0Detector Phase0Switch Phase2.02.0Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)2.02.0All-Red Time (s)2.02.0Lead/Lag0.00.0Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lead/Lag11Lost Time (s)21Lost Time (s)21Lost Time (s)11Lost Time (s)21Lost Time (s)21Lost Time (s)21Lost Time (s)31Lost Effect Green (s)41Actuated g/C Ratio11V/c Ratio11Control Delay11Lost Approach Delay11Approach Los11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |       |      |
| Protected Phases910Permitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.02.0AllMinimum Split (s)4.0Total Split (s)4.04.07%7%7%Yellow Time (s)2.02.02.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)2Lead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal DelayLOSApproach DelayApproach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |       |      |
| Permitted Phases<br>Detector Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (%) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 2.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s) U<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |       |      |
| Detector Phase<br>Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 2.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s) UI<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>V/C Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 9     | 10   |
| Switch Phase<br>Minimum Initial (s) 2.0 2.0<br>Minimum Split (s) 4.0 4.0<br>Total Split (s) 4.0 4.0<br>Total Split (s) 7% 7%<br>Yellow Time (s) 2.0 2.0<br>All-Red Time (s) 0.0 0.0<br>Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |       |      |
| Minimum Initial (s)2.02.0Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Detector Phase      |       |      |
| Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)7Total Lost Time (s)1Lead/Lag1Lead/Lag1Lead/Lag Optimize?8Recall ModeNoneAct Effct Green (s)1Actuated g/C Ratio1v/c Ratio1Control Delay1Queue Delay1LOSApproach DelayApproach LOS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Switch Phase        |       |      |
| Minimum Split (s)4.04.0Total Split (s)4.04.0Total Split (s)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimum Initial (s) | 2.0   | 2.0  |
| Total Split (s)4.04.0Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |       |      |
| Total Split (%)7%7%Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |       |      |
| Yellow Time (s)2.02.0All-Red Time (s)0.00.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |       |      |
| All-Red Time (s)0.00.0Lost Time Adjust (s)Total Lost Time (s)Image: Constraint of the second |                     |       |      |
| Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |       |      |
| Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 0.0   | 5.0  |
| Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |       |      |
| Lead-Lag Optimize?<br>Recall Mode None None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |       |      |
| Recall ModeNoneNoneAct Effct Green (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |       |      |
| Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | Nono  | None |
| Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | NULLE | NUTE |
| v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |       |      |
| Control Delay<br>Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |      |
| Queue Delay<br>Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |       |      |
| Total Delay<br>LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |       |      |
| LOS<br>Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Queue Delay         |       |      |
| Approach Delay<br>Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |       |      |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |       |      |
| Stops (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |       |      |
| otopo (tpi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stops (vph)         |       |      |

|                                 | → →            | $\sim$    | ∢           | +          | •          | 1   | 1    | 1   | 1   | Ļ    | ~   |
|---------------------------------|----------------|-----------|-------------|------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                      | EBL EB         | EBR       | WBL         | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| Fuel Used(gal)                  | (              | ,<br>)    |             | 7          |            |     | 3    |     |     | 2    |     |
| CO Emissions (g/hr)             | 40             |           |             | 472        |            |     | 224  |     |     | 144  |     |
| NOx Emissions (g/hr)            | 78             | }         |             | 92         |            |     | 44   |     |     | 28   |     |
| VOC Emissions (g/hr)            | 93             | }         |             | 109        |            |     | 52   |     |     | 33   |     |
| Dilemma Vehicles (#)            | (              | )         |             | 0          |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)          | 80             | )         |             | 94         |            |     | 76   |     |     | 79   |     |
| Queue Length 95th (ft)          | 22             | )         |             | #309       |            |     | 121  |     |     | 100  |     |
| Internal Link Dist (ft)         | 60             | 5         |             | 317        |            |     | 218  |     |     | 127  |     |
| Turn Bay Length (ft)            |                |           |             |            |            |     |      |     |     |      |     |
| Base Capacity (vph)             | 978            | }         |             | 974        |            |     | 489  |     |     | 415  |     |
| Starvation Cap Reductn          | (              | )         |             | 0          |            |     | 0    |     |     | 0    |     |
| Spillback Cap Reductn           | (              | )         |             | 0          |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn             | (              | )         |             | 0          |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio               | 0.50           | )         |             | 0.56       |            |     | 0.49 |     |     | 0.58 |     |
| Intersection Summary            |                |           |             |            |            |     |      |     |     |      |     |
| Area Type: O                    | ther           |           |             |            |            |     |      |     |     |      |     |
| Cycle Length: 60                |                |           |             |            |            |     |      |     |     |      |     |
| Actuated Cycle Length: 60       |                |           |             |            |            |     |      |     |     |      |     |
| Offset: 0 (0%), Referenced to   | phase 2:WBTL   | and 6:EBT | L, Start of | Yellow     |            |     |      |     |     |      |     |
| Natural Cycle: 60               |                |           |             |            |            |     |      |     |     |      |     |
| Control Type: Actuated-Coord    | dinated        |           |             |            |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.73         |                |           |             |            |            |     |      |     |     |      |     |
| Intersection Signal Delay: 18.  | .6             |           | In          | tersectior | n LOS: B   |     |      |     |     |      |     |
| Intersection Capacity Utilizati | on 59.8%       |           | IC          | U Level of | of Service | B   |      |     |     |      |     |
| Analysis Period (min) 15        |                |           |             |            |            |     |      |     |     |      |     |
| # 95th percentile volume ex     | ceeds capacity | queue may | y be longe  | r.         |            |     |      |     |     |      |     |
| Queue shown is maximun          |                |           | Ū           |            |            |     |      |     |     |      |     |

Splits and Phases: 22: York Street & Tower Parkway/Grove Street

| ₽∎ <sub>Ø9</sub> | ₩<br>Ø2 (R) | He Mai | 0 <b>™</b> ø4 |  |
|------------------|-------------|--------|---------------|--|
| 4 s              | 30 s        | 4s     | 22 s          |  |
|                  | Ø6 (R)      |        | Ø8            |  |
|                  | 30 s        |        | 22 s          |  |

## New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                         | ≯     | -     | *    | Ļ     | *_    | -      | Ť     | 1    | 1     | ţ     | ~    | <b>`</b> + |
|-------------------------|-------|-------|------|-------|-------|--------|-------|------|-------|-------|------|------------|
| Lane Group              | EBL   | EBT   | EBR  | WBT   | WBR   | NBL2   | NBT   | NBR  | SBL   | SBT   | SBR  | SEL        |
| Lane Configurations     | ľ     | ¢Î    |      | 1     | *     | ٦<br>۲ | ¢Î    |      |       | \$    |      | 7          |
| Traffic Volume (vph)    | 50    | 505   | 25   | 260   | 25    | 240    | 130   | 225  | 25    | 100   | 25   | 30         |
| Future Volume (vph)     | 50    | 505   | 25   | 260   | 25    | 240    | 130   | 225  | 25    | 100   | 25   | 30         |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900   | 1900  | 1900 | 1900  | 1900  | 1900 | 1900       |
| Storage Length (ft)     | 0     |       | 0    |       | 0     |        |       | 0    | 0     |       | 0    | 0          |
| Storage Lanes           | 1     |       | 0    |       | 1     |        |       | 0    | 0     |       | 0    | 1          |
| Taper Length (ft)       | 0     |       |      |       |       |        |       |      | 0     |       |      | 0          |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00   | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00       |
| Ped Bike Factor         |       | 0.98  |      |       |       |        | 0.79  |      |       | 0.87  |      |            |
| Frt                     |       | 0.993 |      |       | 0.850 |        | 0.905 |      |       | 0.978 |      |            |
| Flt Protected           | 0.950 |       |      |       |       | 0.950  |       |      |       | 0.992 |      | 0.950      |
| Satd. Flow (prot)       | 1586  | 1683  | 0    | 1801  | 892   | 1616   | 1262  | 0    | 0     | 1557  | 0    | 997        |
| Flt Permitted           | 0.950 |       |      |       |       | 0.575  |       |      |       | 0.592 |      | 0.950      |
| Satd. Flow (perm)       | 1586  | 1683  | 0    | 1801  | 892   | 978    | 1262  | 0    | 0     | 904   | 0    | 997        |
| Right Turn on Red       |       |       | No   |       |       |        |       | No   |       |       |      |            |
| Satd. Flow (RTOR)       |       |       |      |       |       |        |       |      |       |       |      |            |
| Link Speed (mph)        |       | 25    |      | 25    |       |        | 25    |      |       | 25    |      | 25         |
| Link Distance (ft)      |       | 309   |      | 401   |       |        | 898   |      |       | 511   |      | 228        |
| Travel Time (s)         |       | 8.4   |      | 10.9  |       |        | 24.5  |      |       | 13.9  |      | 6.2        |
| Confl. Peds. (#/hr)     |       |       | 282  |       |       |        |       | 165  | 165   |       | 376  |            |
| Confl. Bikes (#/hr)     |       |       | 15   |       | 15    |        |       | 15   |       |       | 15   |            |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.90   | 0.90  | 0.90 | 0.92  | 0.92  | 0.92 | 0.94       |
| Heavy Vehicles (%)      | 10%   | 6%    | 2%   | 2%    | 75%   | 8%     | 2%    | 6%   | 2%    | 2%    | 2%   | 75%        |
| Adj. Flow (vph)         | 54    | 549   | 27   | 283   | 27    | 267    | 144   | 250  | 27    | 109   | 27   | 32         |
| Shared Lane Traffic (%) |       |       |      |       |       |        |       |      |       |       |      |            |
| Lane Group Flow (vph)   | 54    | 576   | 0    | 283   | 27    | 267    | 394   | 0    | 0     | 163   | 0    | 32         |
| Turn Type               | Prot  | NA    |      | NA    | Over  | D.P+P  | NA    |      | Perm  | NA    |      | Prot       |
| Protected Phases        | 1     | 12    |      | 2     | 9     | 3      | 34    |      |       | 4     |      | 9          |
| Permitted Phases        |       |       |      |       |       | 4      |       |      | 4     |       |      |            |
| Detector Phase          | 1     | 12    |      | 2     | 9     | 3      | 34    |      | 4     | 4     |      | 9          |
| Switch Phase            |       |       |      |       |       |        |       |      |       |       |      |            |
| Minimum Initial (s)     | 4.0   |       |      | 12.0  | 2.0   | 4.0    |       |      | 12.0  | 12.0  |      | 2.0        |
| Minimum Split (s)       | 10.0  |       |      | 18.0  | 10.0  | 10.0   |       |      | 19.0  | 19.0  |      | 10.0       |
| Total Split (s)         | 12.0  |       |      | 25.0  | 13.0  | 11.0   |       |      | 25.0  | 25.0  |      | 13.0       |
| Total Split (%)         | 13.3% |       |      | 27.8% | 14.4% | 12.2%  |       |      | 27.8% | 27.8% |      | 14.4%      |
| Yellow Time (s)         | 4.0   |       |      | 4.0   | 4.0   | 4.0    |       |      | 4.0   | 4.0   |      | 4.0        |
| All-Red Time (s)        | 2.0   |       |      | 1.0   | 2.0   | 2.0    |       |      | 1.0   | 1.0   |      | 2.0        |
| Lost Time Adjust (s)    | 0.0   |       |      | 0.0   | 0.0   | 0.0    |       |      |       | 0.0   |      | 0.0        |
| Total Lost Time (s)     | 6.0   |       |      | 5.0   | 6.0   | 6.0    |       |      |       | 5.0   |      | 6.0        |
| Lead/Lag                | Lag   |       |      | Lead  |       | Lag    |       |      | Lead  | Lead  |      |            |
| Lead-Lag Optimize?      |       |       |      |       |       |        |       |      |       |       |      |            |
| Recall Mode             | None  |       |      | C-Min | None  | None   |       |      | None  | None  |      | None       |
| Act Effct Green (s)     | 6.0   | 35.3  |      | 24.3  | 6.6   | 24.0   | 30.0  |      |       | 20.0  |      | 6.6        |
| Actuated g/C Ratio      | 0.07  | 0.39  |      | 0.27  | 0.07  | 0.27   | 0.33  |      |       | 0.22  |      | 0.07       |
| v/c Ratio               | 0.51  | 0.87  |      | 0.58  | 0.42  | 0.90   | 0.94  |      |       | 0.81  |      | 0.44       |
| Control Delay           | 58.7  | 44.0  |      | 36.4  | 58.8  | 63.5   | 62.1  |      |       | 65.2  |      | 58.8       |
| Queue Delay             | 0.0   | 0.0   |      | 0.0   | 0.0   | 0.0    | 0.0   |      |       | 0.0   |      | 0.0        |
| Total Delay             | 58.7  | 44.0  |      | 36.4  | 58.8  | 63.5   | 62.1  |      |       | 65.2  |      | 58.8       |
| LOS                     | E     | D     |      | D     | E     | E      | E     |      |       | E     |      | E          |

Lanes, Volumes, Timings SLR

| Lane Configurations           Traffic Volume (vph)           Future Volume (vph)           Storage Length (ft)           Storage Lanes           Taper Length (ft)           Lane Uill, Factor           Ped Bike Factor           Frt           Fit Protected           Satd. Flow (prot)           Link Speed (mph)           Lane Group Flow (phn)           Confit Peds. (#/hr)           Confit Peds. (#/hr)           Peds (#/hr)           Penmited Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lane Group         | Ø10  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|--|--|
| Traffic Volume (vph)         Future Volume (vph)         Ideal Flow (vphp)         Storage Length (ft)         Storage Lanes         Taper Length (ft)         Lane Uill. Factor         Ped Bike Factor         Frt         Fit Protected         Satd. Flow (prot)         Fit Premitted         Satd. Flow (prot)         Fit Premitted         Satd. Flow (RTOR)         Link Distance (ft)         Travel Time (s)         Confl. Bikes (#/hr)         Confl. Bikes (#/hr) <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |      |  |  |
| Future Volume (vph)         Ideal Flow (vphp)         Storage Lanes         Taper Length (ft)         Lane Util. Factor         Ped Bike Factor         Frt         Fil Protected         Satd. Flow (prot)         Filt Permitted         Satd. Flow (prot)         Right Turn on Red         Satd. Flow (protR)         Link Speed (mph)         Link Obistance (ft)         Travel Time (s)         Confl. Bikes (#/hr)         Pendes         Group Flow (vph)         Shard Lane Traffic (%)         Lane Group Flow (vph)         Shard Lane Traffic (%)         Lane Group Flow (vph)         Protected Phases         Switch Phase         Minimum Initia (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |      |  |  |
| Ideal Flow (vphp)         Storage Length (ft)         Storage Lanes         Taper Length (ft)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Filt Permitted         Satd. Flow (prot)         Kipt Turn on Red         Satd. Flow (prOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shire (%)         Shire (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         Laned Time (s)       2.0         Laned Time (s)       2.0         Laned Time (s)       2.0         Laned Lane Time (s)       2.0         Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |  |  |
| Storage Length (ft)         Storage Lanes         Taper Length (ft)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Flt Premitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Premitted Phases         Detector Phase         Switch Phase         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       2.0         Laed-Lag Optimize?         Recall Mode       None         ActLatef of C Ratio       V/c Ratio         Velawur Ime (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |  |  |
| Storage Lanes         Taper Length (ft)         Lane Utill. Factor         Ped Bike Factor         Fit         Fit Protected         Satd. Flow (prot)         Fit Permitted         Satd. Flow (prot)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Speed (mph)         Confl. Peds. (#hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Initial (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       5.0         Lead/Lag       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |      |  |  |
| Taper Length (ft)         Lane Util. Factor         Ped Bike Factor         Frt         Flt Protected         Satd. Flow (prot)         Filt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         State Lane Traffic (%)         Lane Group Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)         Split (s)         Total Split (s)         Total Split (s)         Total Split (s)         Total Lost Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |      |  |  |
| Lane Util. Factor         Ped Bike Factor         Frt         Fit Protected         Satd. Flow (prot)         Fit Protected         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       0.0         Lost Time Adjust (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (s)         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |      |  |  |
| Ped Bike Factor         Frt         Fit Protected         Satd. Flow (port)         Fit Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Speed (mph)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Initial (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       2.0         Lost Time Adjust (s)       7.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       0.0         Lost Time (s)       2.0         Land-Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |      |  |  |
| Frt         Flt Protected         Said. Flow (prot)         Filt Permitted         Said. Flow (prem)         Right Turn on Red         Said. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Bikes (#hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (%)         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (S)         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split Careen (s)     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |      |  |  |
| Fit Protected         Satd. Flow (prot)         Fit Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       1.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       1.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       1.0         Total Split (%)       4%      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |      |  |  |
| Satd. Flow (prot)         Flt Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Confl. Peds. (#/hr)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       0.0         Lost Time Adjust (s)         Total Lost Time (s)       0.0         Lead/Lag       Lead/Lag         Lead/Lag Optimize?         Recall Mode       None         Act Effct Green (s)       Actuated g/C Ratio         v/c Ratio       Control Delay         Cource Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |      |  |  |
| Fit Permitted         Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Minimun Initial (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       0.0         Lead-Lag Optimize?       Reaell Mode         Recall Mode       None         Act Effct Green (s)       Actuated g/C Ratio         v/c Ratio       Control Delay         Ouceue Delay       Control Delay         Ouceue Delay<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |  |  |
| Satd. Flow (perm)         Right Turn on Red         Satd. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       2.0         All-Red Time (s)       2.0         All-Red Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (%)         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (s)         Total Split (%)       4%         Yellow Time (s)       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |  |  |
| Right Turn on Red         Satd. Flow (RTOR)         Link bistance (mph)         Link bistance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       7.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (%)         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         Lead-Lag Optimize?       Recall Mode         Recall Mode       None<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |      |  |  |
| Said. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |  |  |
| Said. Flow (RTOR)         Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Right Turn on Red  |      |  |  |
| Link Speed (mph)         Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Lost Time (s)       0.0         Lead-Lag Optimize?       Eacl-Lag Optimize?         Recall Mode       None         Actuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |  |  |
| Link Distance (ft)         Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       7.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (%)         Total Lost Time (s)       0.0         Lead-Lag Optimize?       Recall Mode         Recall Mode       None         Act Effct Green (s)       Actuated g/C Ratio         v/c Ratio       Control Delay         Queue Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Link Speed (mph)   |      |  |  |
| Travel Time (s)         Confl. Peds. (#/hr)         Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       0.0         Lost Time (s)       0.0         Lead/Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |      |  |  |
| Confl. Peds. (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         All-Red Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Split (s)         Total Split (s)       4.0         Total Lost Time (s)       2.0         Lead/Lag       Used Time (s)         Lead/Lag       Used Time (s)         Lead/Lag       Used Time (s)         Lead/Lag       None         Actuated g/C Ratio       V/c Ratio         V/c Ratio       Control Delay         Queue Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |  |  |
| Confl. Bikes (#/hr)         Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (%)       4%         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       Total Lost Time (s)         Lead-Lag Optimize?       Recall Mode         Recall Mode       None         Actuated g/C Ratio       V/c Ratio         V/c Ratio       Control Delay         Queue Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |      |  |  |
| Peak Hour Factor         Heavy Vehicles (%)         Adj. Flow (vph)         Shared Lane Traffic (%)         Lane Group Flow (vph)         Turn Type         Protected Phases         Detector Phase         Switch Phase         Minimum Initial (s)       2.0         Minimum Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       2.0         All-Red Time (s)       0.0         Lost Time (s)       0.0         Lost Time (s)       0.0         Lead/Lag       Lead-Lag Optimize?         Recall Mode       None         Act Effct Green (s)       Actuated g/C Ratio         v/c Ratio       Control Delay         Queue Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |      |  |  |
| Heavy Vehicles (%) Adj. Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 2.0 Minimum Split (s) 4.0 Total Split (s) 4.0 Total Split (%) 4% Yellow Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) 0.0 Lost Time (s) 2.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode None Act Effct Green (s) Actuated g/C Ratio V/c Ratio Control Delay Queue Delay Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |      |  |  |
| Adj. Flow (vph)Shared Lane Traffic (%)Lane Group Flow (vph)Turn TypeProtected PhasesProtected PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (s)2.0All-Red Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)0.0Lead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal DelayTotal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |      |  |  |
| Shared Lane Traffic (%)   Lane Group Flow (vph)   Turn Type   Protected Phases   Detector Phase   Switch Phase   Minimum Initial (s)   2.0   Minimum Split (s)   4.0   Total Split (s)   4.0   Total Split (s)   4.0   Total Split (s)   2.0   All-Red Time (s)   2.0   All-Red Time (s)   0.0   Lost Time Adjust (s)   Total Lost Time (s)   Lead/Lag   Lead/Lag   Lead/Lag Optimize?   Recall Mode   None   Act Effct Green (s)   Actuated g/C Ratio   v/c Ratio   Control Delay   Queue Delay   Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |      |  |  |
| Lane Group Flow (vph)         Turn Type         Protected Phases       10         Permitted Phases         Detector Phase         Switch Phase         Minimun Initial (s)       2.0         Minimun Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Total Split (s)       4.0         Yellow Time (s)       2.0         All-Red Time (s)       0.0         Lost Time Adjust (s)       0.0         Lost Time Adjust (s)       10         Total Lost Time (s)       2.0         Lead/Lag       2.0         Lead-Lag Optimize?       Recall Mode         Recall Mode       None         Actuated g/C Ratio       V/c Ratio         V/c Ratio       Control Delay         Queue Delay       Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |      |  |  |
| Turn TypeProtected Phases10Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)0.0Lead/LagLead/LagLead/LagControl DelayQueue DelayTotal DelayOueue DelayTotal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |      |  |  |
| Protected Phases10Permitted PhasesDetector PhaseSwitch PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)0.0Lead/LagLead/LagLead/Lag (component of the second of the s                                                                                                                               |                    |      |  |  |
| Permitted PhasesDetector PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (s)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)1Lead/Lag1Lead/Lag1Lead/Lag Optimize?1Recall ModeNoneAct Effct Green (s)4Actuated g/C Ratio1V/c Ratio1Control Delay1Queue Delay1Total Delay1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 10   |  |  |
| Detector PhaseSwitch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 10   |  |  |
| Switch PhaseMinimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)Lead/LagLead/LagRecall ModeRecall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioV/c RatioControl DelayQueue DelayTotal DelayValue Addition Addit                                                                                                                                                          |                    |      |  |  |
| Minimum Initial (s)2.0Minimum Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)0.0Total Lost Time (s)Lead/LagLead/LagImage: Comparison of the second secon |                    |      |  |  |
| Minimum Split (s)4.0Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C RatioV/c RatioControl DelayQueue DelayTotal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |      |  |  |
| Total Split (s)4.0Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Total Lost Time (s)Lead/LagLead-Lag Optimize?Recall ModeNoneAct Effct Green (s)Actuated g/C Ratiov/c RatioControl DelayQueue DelayTotal Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |      |  |  |
| Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Image: Control Lost Time (s)Total Lost Time (s)Image: Control Lost Time (s)Lead-Lag Optimize?Image: Control Control DelayActuated g/C RatioImage: Control DelayOueue DelayImage: Control DelayTotal DelayImage: Control Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |      |  |  |
| Total Split (%)4%Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)Image: Control Lost Time (s)Total Lost Time (s)Image: Control Lost Time (s)Lead-Lag Optimize?Image: Control Control DelayActuated g/C RatioImage: Control DelayOueue DelayImage: Control DelayTotal DelayImage: Control Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Split (s)    | 4.0  |  |  |
| Yellow Time (s)2.0All-Red Time (s)0.0Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 4%   |  |  |
| All-Red Time (s)       0.0         Lost Time Adjust (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 2.0  |  |  |
| Lost Time Adjust (s)<br>Total Lost Time (s)<br>Lead/Lag<br>Lead-Lag Optimize?<br>Recall Mode None<br>Act Effct Green (s)<br>Actuated g/C Ratio<br>V/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 0.0  |  |  |
| Total Lost Time (s)         Lead/Lag         Lead-Lag Optimize?         Recall Mode       None         Act Effct Green (s)         Actuated g/C Ratio         v/c Ratio         Control Delay         Queue Delay         Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |      |  |  |
| Lead/Lag         Lead-Lag Optimize?         Recall Mode       None         Act Effct Green (s)         Actuated g/C Ratio         v/c Ratio         Control Delay         Queue Delay         Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |      |  |  |
| Lead-Lag Optimize?         Recall Mode       None         Act Effct Green (s)         Actuated g/C Ratio         v/c Ratio         Control Delay         Queue Delay         Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |      |  |  |
| Recall Mode     None       Act Effct Green (s)     Actuated g/C Ratio       V/c Ratio     V/c Ratio       Control Delay     Queue Delay       Total Delay     Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Load Lag Optimizo? |      |  |  |
| Act Effct Green (s)<br>Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Leau-Lay Optimize? | Nono |  |  |
| Actuated g/C Ratio<br>v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | None |  |  |
| v/c Ratio<br>Control Delay<br>Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |      |  |  |
| Control Delay<br>Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |      |  |  |
| Queue Delay<br>Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |      |  |  |
| Total Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |      |  |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |      |  |  |

## New Haven Two-Way Study 23: York Street & Elm Street & Broadway

| EBL<br>47<br>1<br>64<br>12<br>15 | EBT<br>45.3<br>D<br>421<br>8<br>543<br>106                                                      | EBR                                                                                                                                                                                                                                                             | WBT<br>38.3<br>D<br>224<br>4                                                                                                                                                                                                  | WBR<br>26                                                                                                                                                                                                                                                                                                                                                                                                                          | NBL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NBT<br>62.7<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SBT<br>65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>64<br>12                    | D<br>421<br>8<br>543<br>106                                                                     |                                                                                                                                                                                                                                                                 | D<br>224                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br>64<br>12                    | 421<br>8<br>543<br>106                                                                          |                                                                                                                                                                                                                                                                 | 224                                                                                                                                                                                                                           | 26                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1<br>64<br>12                    | 8<br>543<br>106                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 64<br>12                         | 543<br>106                                                                                      |                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                               | 106                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 | 257                                                                                                                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                 | 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15                               |                                                                                                 |                                                                                                                                                                                                                                                                 | 50                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | 126                                                                                             |                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                                | 0                                                                                               |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30                               | 322                                                                                             |                                                                                                                                                                                                                                                                 | 149                                                                                                                                                                                                                           | 15                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| #77                              | #542                                                                                            |                                                                                                                                                                                                                                                                 | #253                                                                                                                                                                                                                          | #46                                                                                                                                                                                                                                                                                                                                                                                                                                | #238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | 229                                                                                             |                                                                                                                                                                                                                                                                 | 321                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 105                              | 659                                                                                             |                                                                                                                                                                                                                                                                 | 486                                                                                                                                                                                                                           | 69                                                                                                                                                                                                                                                                                                                                                                                                                                 | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0                                | 0                                                                                               |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                                | 0                                                                                               |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                                | 0                                                                                               |                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.51                             | 0.87                                                                                            |                                                                                                                                                                                                                                                                 | 0.58                                                                                                                                                                                                                          | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| er                               |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| hase 2:                          | EBWB, S                                                                                         | tart of Ye                                                                                                                                                                                                                                                      | ellow                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ated                             |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 88.0%                            |                                                                                                 |                                                                                                                                                                                                                                                                 | IC                                                                                                                                                                                                                            | U Level                                                                                                                                                                                                                                                                                                                                                                                                                            | of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  |                                                                                                 | eue may                                                                                                                                                                                                                                                         | be longe                                                                                                                                                                                                                      | er.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ifter two                        | o cycles.                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | 30<br>#77<br>105<br>0<br>0<br>0.51<br>er<br>hase 2:<br>hated<br>a 88.0%<br>eeds ca<br>offer two | 30       322         #77       #542         229         105       659         0       0         0       0         0.51       0.87         er       30.87         hase 2:EBWB, S       30.87         ated       30.87         eeds capacity, quifter two cycles. | 30       322         #77       #542         229         105       659         0       0         0       0         0       0         0.51       0.87         er       38.0%         eeds capacity, queue may offer two cycles. | 30       322       149         #77       #542       #253         229       321         105       659       486         0       0       0         0       0       0         0       0       0         0       0       0         0.51       0.87       0.58         er         In ase 2:EBWB, Start of Yellow         hase 2:EBWB, Start of Yellow         eds capacity, queue may be longe         eds capacity, queue may be longe | 30       322       149       15         #77       #542       #253       #46         229       321       105       659       486       69         0       0       0       0       0       0       0         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | 30       322       149       15       120         #77       #542       #253       #46       #238         229       321       150         105       659       486       69       296         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90         Intersection LOS: D         hase 2:EBWB, Start of Yellow         eer         Ass.0%       ICU Level of Service         eeds capacity, queue may be longer.         of ther two cycles. | 30       322       149       15       120       215         #77       #542       #253       #46       #238       #395         229       321       818       150       150         105       659       486       69       296       420         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90       0.94         Intersection LOS: D         Intersection LOS: D         188.0%       ICU Level of Service E | 30       322       149       15       120       215         #77       #542       #253       #46       #238       #395         229       321       818       150       150         105       659       486       69       296       420         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90       0.94         Intersection LOS: D         Isses 2:EBWB, Start of Yellow         Intersection LOS: D         Isses 30%         ICU Level of Service E         Beds capacity, queue may be longer.         Ifter two cycles. | 30       322       149       15       120       215         #77       #542       #253       #46       #238       #395         229       321       818         105       659       486       69       296       420         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90       0.94 | 30       322       149       15       120       215       88         #77       #542       #253       #46       #238       #395       #198         229       321       818       431         105       659       486       69       296       420       200         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90       0.94       0.81         Intersection LOS: D         Is8.0%       ICU Level of Service E         seeds capacity, queue may be longer.         ifter two cycles. | 30       322       149       15       120       215       88         #77       #542       #253       #46       #238       #395       #198         229       321       818       431         105       659       486       69       296       420       200         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0       0       0       0       0       0       0         0.51       0.87       0.58       0.39       0.90       0.94       0.81         Intersection LOS: D         tated         Intersection LOS: D         188.0%       ICU Level of Service E         tert wo cycles. |

| Splits and Phases: | 23: York Street & Elm Street & Broa | dway | ý l |
|--------------------|-------------------------------------|------|-----|
|                    | 4                                   |      |     |

| V9   | ₩<br>Ø2 (R) | <b>∠</b> <sub>Ø1</sub> | 1   | Ø1 <b>1</b> Ø4 |      | 3 |
|------|-------------|------------------------|-----|----------------|------|---|
| 13 s | 25 s        | 12 s                   | 4 s | 25 s           | 11 s |   |

## New Haven Two-Way Study 24: York Street & Chapel Street

|                                        | ٠     | -     | $\mathbf{i}$ | 1        | +        | ×           | •       | t        | *           | 1        | Ļ     | ~    |
|----------------------------------------|-------|-------|--------------|----------|----------|-------------|---------|----------|-------------|----------|-------|------|
| Lane Group                             | EBL   | EBT   | EBR          | •<br>WBL | WBT      | WBR         | NBL     | NBT      | NBR         | SBL      | SBT   | SBR  |
| Lane Configurations                    |       | 4     | LBR          | <u> </u> | <b>1</b> | <b>MB</b> R | 1       | <b>1</b> | <b>HB</b> R | <u> </u> | ÷     | ODI  |
| Traffic Volume (vph)                   | 25    | 25    | 25           | 25       | 300      | 115         | 130     | 560      | 75          | 25       | 100   | 50   |
| Future Volume (vph)                    | 25    | 25    | 25           | 25       | 300      | 115         | 130     | 560      | 75          | 25       | 100   | 50   |
| Ideal Flow (vphpl)                     | 1900  | 1900  | 1900         | 1900     | 1900     | 1900        | 1900    | 1900     | 1900        | 1900     | 1900  | 1900 |
| Lane Width (ft)                        | 1900  | 1900  | 1900         | 1900     | 1900     | 1900        | 1900    | 1900     | 1900        | 1900     | 1900  | 1900 |
|                                        | 50    | 11    | 0            | 50       | 11       | 0           | 50      | 11       | 0           | 50       | 11    | 0    |
| Storage Length (ft)                    | 0     |       | 0            | 50       |          |             | 50<br>1 |          | 0           | 50<br>1  |       | 0    |
| Storage Lanes                          | 25    |       | 0            | 25       |          | 0           | 25      |          | 0           | 25       |       | 0    |
| Taper Length (ft)<br>Lane Util. Factor |       | 1.00  | 1 00         | 1.00     | 1.00     | 1.00        | 1.00    | 1.00     | 1 00        | 1.00     | 1.00  | 1 00 |
|                                        | 1.00  | 0.94  | 1.00         |          | 1.00     | 1.00        |         |          | 1.00        | 1.00     |       | 1.00 |
| Ped Bike Factor                        |       |       |              | 0.88     | 0.95     |             | 0.89    | 0.98     |             |          | 0.95  |      |
| Frt<br>Fit Droto start                 |       | 0.955 |              | 0.050    | 0.958    |             |         | 0.982    |             | 0.050    | 0.950 |      |
| Flt Protected                          | 0     | 0.984 | 0            | 0.950    | 1/10     | 0           | 0.950   | 1740     | 0           | 0.950    | 1/10  | 0    |
| Satd. Flow (prot)                      | 0     | 1598  | 0            | 1711     | 1610     | 0           | 1668    | 1749     | 0           | 1652     | 1618  | 0    |
| Flt Permitted                          | 0     | 0.577 |              | 0.786    | 1(10     | 0           | 0.654   | 4740     | 0           | 0.148    | 4/40  |      |
| Satd. Flow (perm)                      | 0     | 937   | 0            | 1243     | 1610     | 0           | 1021    | 1749     | 0           | 257      | 1618  | 0    |
| Right Turn on Red                      |       |       | No           |          |          | No          |         |          | No          |          |       | No   |
| Satd. Flow (RTOR)                      |       |       |              |          |          |             |         |          |             |          |       |      |
| Link Speed (mph)                       |       | 25    |              |          | 25       |             |         | 25       |             |          | 25    |      |
| Link Distance (ft)                     |       | 511   |              |          | 419      |             |         | 515      |             |          | 898   |      |
| Travel Time (s)                        |       | 13.9  |              |          | 11.4     |             |         | 14.0     |             |          | 24.5  |      |
| Confl. Peds. (#/hr)                    | 60    |       | 60           | 60       |          | 60          | 60      |          | 60          | 60       |       | 60   |
| Confl. Bikes (#/hr)                    |       |       | 10           |          |          | 10          |         |          | 10          |          |       | 10   |
| Peak Hour Factor                       | 0.92  | 0.92  | 0.92         | 0.75     | 0.75     | 0.75        | 0.80    | 0.80     | 0.80        | 0.92     | 0.92  | 0.92 |
| Heavy Vehicles (%)                     | 2%    | 2%    | 2%           | 2%       | 2%       | 10%         | 1%      | 1%       | 2%          | 2%       | 2%    | 2%   |
| Adj. Flow (vph)                        | 27    | 27    | 27           | 33       | 400      | 153         | 163     | 700      | 94          | 27       | 109   | 54   |
| Shared Lane Traffic (%)                |       |       |              |          |          |             |         |          |             |          |       |      |
| Lane Group Flow (vph)                  | 0     | 81    | 0            | 33       | 553      | 0           | 163     | 794      | 0           | 27       | 163   | 0    |
| Turn Type                              | Perm  | NA    |              | Perm     | NA       |             | Perm    | NA       |             | Perm     | NA    |      |
| Protected Phases                       |       | 6     |              |          | 2        |             |         | 4        |             |          | 8     |      |
| Permitted Phases                       | 6     |       |              | 2        |          |             | 4       |          |             | 8        |       |      |
| Detector Phase                         | 6     | 6     |              | 2        | 2        |             | 4       | 4        |             | 8        | 8     |      |
| Switch Phase                           |       |       |              |          |          |             |         |          |             |          |       |      |
| Minimum Initial (s)                    | 7.0   | 7.0   |              | 7.0      | 7.0      |             | 7.0     | 7.0      |             | 7.0      | 7.0   |      |
| Minimum Split (s)                      | 17.0  | 17.0  |              | 17.0     | 17.0     |             | 17.0    | 17.0     |             | 17.0     | 17.0  |      |
| Total Split (s)                        | 21.0  | 21.0  |              | 21.0     | 21.0     |             | 31.0    | 31.0     |             | 31.0     | 31.0  |      |
| Total Split (%)                        | 35.0% | 35.0% |              | 35.0%    | 35.0%    |             | 51.7%   | 51.7%    |             | 51.7%    | 51.7% |      |
| Yellow Time (s)                        | 3.0   | 3.0   |              | 3.0      | 3.0      |             | 3.0     | 3.0      |             | 3.0      | 3.0   |      |
| All-Red Time (s)                       | 1.0   | 1.0   |              | 1.0      | 1.0      |             | 1.0     | 1.0      |             | 1.0      | 1.0   |      |
| Lost Time Adjust (s)                   |       | 0.0   |              | 0.0      | 0.0      |             | 0.0     | 0.0      |             | 0.0      | 0.0   |      |
| Total Lost Time (s)                    |       | 4.0   |              | 4.0      | 4.0      |             | 4.0     | 4.0      |             | 4.0      | 4.0   |      |
| Lead/Lag                               |       |       |              |          |          |             |         |          |             |          |       |      |
| Lead-Lag Optimize?                     |       |       |              |          |          |             |         |          |             |          |       |      |
| Recall Mode                            | C-Min | C-Min |              | C-Min    | C-Min    |             | None    | None     |             | None     | None  |      |
| Act Effct Green (s)                    |       | 21.8  |              | 21.8     | 21.8     |             | 27.0    | 27.0     |             | 27.0     | 27.0  |      |
| Actuated g/C Ratio                     |       | 0.36  |              | 0.36     | 0.36     |             | 0.45    | 0.45     |             | 0.45     | 0.45  |      |
| v/c Ratio                              |       | 0.30  |              | 0.07     | 0.95     |             | 0.45    | 1.01     |             | 0.43     | 0.43  |      |
| Control Delay                          |       | 17.7  |              | 15.4     | 51.5     |             | 13.6    | 54.4     |             | 16.6     | 11.2  |      |
| Queue Delay                            |       | 0.0   |              | 0.0      | 0.0      |             | 0.0     | 0.0      |             | 0.0      | 0.0   |      |
| Total Delay                            |       | 17.7  |              | 15.4     |          |             | 13.6    |          |             |          | 11.2  |      |
|                                        |       | 17.7  |              | 13.4     | 51.5     |             | 13.0    | 54.4     |             | 16.6     | 11.Z  |      |

Lanes, Volumes, Timings SLR

#### New Haven Two-Way Study 24: York Street & Chapel Street

|                                            | ٦           | <b>→</b>  | $\mathbf{F}$ | 4           | +                   | •          | 1    | Ť    | 1   | 1    | Ļ    | ~   |
|--------------------------------------------|-------------|-----------|--------------|-------------|---------------------|------------|------|------|-----|------|------|-----|
| Lane Group                                 | EBL         | EBT       | EBR          | WBL         | WBT                 | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBR |
| LOS                                        |             | В         |              | В           | D                   |            | В    | D    |     | В    | В    |     |
| Approach Delay                             |             | 17.7      |              |             | 49.4                |            |      | 47.4 |     |      | 11.9 |     |
| Approach LOS                               |             | В         |              |             | D                   |            |      | D    |     |      | В    |     |
| Stops (vph)                                |             | 56        |              | 20          | 288                 |            | 82   | 508  |     | 19   | 87   |     |
| Fuel Used(gal)                             |             | 1         |              | 0           | 7                   |            | 1    | 12   |     | 0    | 2    |     |
| CO Emissions (g/hr)                        |             | 57        |              | 17          | 485                 |            | 87   | 822  |     | 24   | 127  |     |
| NOx Emissions (g/hr)                       |             | 11        |              | 3           | 94                  |            | 17   | 160  |     | 5    | 25   |     |
| VOC Emissions (g/hr)                       |             | 13        |              | 4           | 112                 |            | 20   | 191  |     | 6    | 30   |     |
| Dilemma Vehicles (#)                       |             | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)                     |             | 18        |              | 7           | 170                 |            | 36   | ~278 |     | 6    | 34   |     |
| Queue Length 95th (ft)                     |             | 56        |              | 22          | #321                |            | 66   | #411 |     | 23   | 67   |     |
| Internal Link Dist (ft)                    |             | 431       |              |             | 339                 |            |      | 435  |     |      | 818  |     |
| Turn Bay Length (ft)                       |             |           |              | 50          |                     |            | 50   |      |     | 50   |      |     |
| Base Capacity (vph)                        |             | 340       |              | 451         | 584                 |            | 459  | 787  |     | 115  | 728  |     |
| Starvation Cap Reductn                     |             | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn                      |             | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn                        |             | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio                          |             | 0.24      |              | 0.07        | 0.95                |            | 0.36 | 1.01 |     | 0.23 | 0.22 |     |
| Intersection Summary                       |             |           |              |             |                     |            |      |      |     |      |      |     |
|                                            | Other       |           |              |             |                     |            |      |      |     |      |      |     |
| Cycle Length: 60                           |             |           |              |             |                     |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60                  |             |           |              |             |                     |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t               | o phase 2:  | WBTL an   | id 6:EBTI    | _, Start of | <sup>F</sup> Yellow |            |      |      |     |      |      |     |
| Natural Cycle: 90                          |             |           |              |             |                     |            |      |      |     |      |      |     |
| Control Type: Actuated-Coo                 | rdinated    |           |              |             |                     |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 1.01                    |             |           |              |             |                     |            |      |      |     |      |      |     |
| Intersection Signal Delay: 43              |             |           |              |             | tersectior          |            | _    |      |     |      |      |     |
| Intersection Capacity Utiliza              | tion //.9%  |           |              | IC          | U Level             | of Service | e D  |      |     |      |      |     |
| Analysis Period (min) 15                   |             |           |              | .,          |                     |            |      |      |     |      |      |     |
| <ul> <li>Volume exceeds capacit</li> </ul> |             |           | cally infin  | ite.        |                     |            |      |      |     |      |      |     |
| Queue shown is maximu                      |             |           |              | h e less    |                     |            |      |      |     |      |      |     |
| # 95th percentile volume e                 |             |           | ieue may     | be longe    | er.                 |            |      |      |     |      |      |     |
| Queue shown is maximu                      | m after two | o cycles. |              |             |                     |            |      |      |     |      |      |     |

#### Splits and Phases: 24: York Street & Chapel Street

| <b>.</b> | Ø9 🗸 Ø2 (R) | ₩ø1 | <1<br>Ø4 |
|----------|-------------|-----|----------|
| 4 s      | 21 s        | 4s  | 31 s     |
|          | <br>₩06 (R) |     | Øs       |
|          | 21 s        |     | 31 s     |

#### New Haven Two-Way Study 25: York Street & Crown Street

|                               | ≯          | -    | $\mathbf{r}$ | ∢    | +        | •          | 1    | Ť     | 1    | 1    | Ļ     | ~    |
|-------------------------------|------------|------|--------------|------|----------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT  | EBR          | WBL  | WBT      | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            |      |              |      | 4        |            |      | र्भ   |      |      | 4     |      |
| Traffic Volume (vph)          | 0          | 0    | 0            | 25   | 215      | 115        | 35   | 450   | 0    | 0    | 140   | 10   |
| Future Volume (vph)           | 0          | 0    | 0            | 25   | 215      | 115        | 35   | 450   | 0    | 0    | 140   | 10   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900         | 1900 | 1900     | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00 | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |      |              |      |          |            |      |       |      |      |       |      |
| Frt                           |            |      |              |      | 0.956    |            |      |       |      |      | 0.991 |      |
| Flt Protected                 |            |      |              |      | 0.996    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (prot)             | 0          | 0    | 0            | 0    | 1730     | 0          | 0    | 1793  | 0    | 0    | 1784  | 0    |
| Flt Permitted                 |            |      |              |      | 0.996    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (perm)             | 0          | 0    | 0            | 0    | 1730     | 0          | 0    | 1793  | 0    | 0    | 1784  | 0    |
| Link Speed (mph)              |            | 25   |              |      | 25       |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 502  |              |      | 419      |            |      | 405   |      |      | 515   |      |
| Travel Time (s)               |            | 13.7 |              |      | 11.4     |            |      | 11.0  |      |      | 14.0  |      |
| Confl. Peds. (#/hr)           |            |      |              | 17   |          | 17         | 74   |       |      |      |       | 74   |
| Confl. Bikes (#/hr)           |            |      |              |      |          | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.92       | 0.92 | 0.92         | 0.78 | 0.78     | 0.78       | 0.86 | 0.86  | 0.86 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)            | 2%         | 2%   | 2%           | 2%   | 1%       | 1%         | 2%   | 2%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 0          | 0    | 0            | 32   | 276      | 147        | 41   | 523   | 0    | 0    | 152   | 11   |
| Shared Lane Traffic (%)       |            |      |              |      |          |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 0    | 0            | 0    | 455      | 0          | 0    | 564   | 0    | 0    | 163   | 0    |
| Sign Control                  |            | Stop |              |      | Stop     |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |      |              |      |          |            |      |       |      |      |       |      |
| Area Type:                    | Other      |      |              |      |          |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |      |              |      |          |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 68.8% | )    |              | IC   | CU Level | of Service | e C  |       |      |      |       |      |
| Analysis Period (min) 15      |            |      |              |      |          |            |      |       |      |      |       |      |

## New Haven Two-Way Study 26: York Street & George Street

|                         | <u>) () () () () () () () () () () () () ()</u> |          | ~     | ~     | +        | •        | •    | +        | *     | 5     | 1     |      |
|-------------------------|-------------------------------------------------|----------|-------|-------|----------|----------|------|----------|-------|-------|-------|------|
|                         | -                                               |          | •     | •     | MOT      | ~        | )    | I        | 1     |       | •     | •    |
| Lane Group              | EBL                                             | EBT      | EBR   | WBL   | WBT      | WBR      | NBL  | NBT      | NBR   | SBL   | SBT   | SBR  |
| Lane Configurations     | <b>`</b>                                        | <b>₽</b> | 05    | 50    | <b>.</b> | 50       | 0    | <b>1</b> | 150   | 05    | र्भ   | 0    |
| Traffic Volume (vph)    | 165                                             | 405      | 25    | 50    | 0        | 50       | 0    | 385      | 150   | 25    | 140   | 0    |
| Future Volume (vph)     | 165                                             | 405      | 25    | 50    | 0        | 50       | 0    | 385      | 150   | 25    | 140   | 0    |
| Ideal Flow (vphpl)      | 1900                                            | 1900     | 1900  | 1900  | 1900     | 1900     | 1900 | 1900     | 1900  | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 0                                               |          | 0     | 0     |          | 0        | 0    |          | 100   | 0     |       | 0    |
| Storage Lanes           | 1                                               |          | 0     | 0     |          | 0        | 0    |          | 1     | 0     |       | 0    |
| Taper Length (ft)       | 0                                               | 1.00     | 1 0 0 | 0     | 1.00     | 1.00     | 0    | 1 0 0    | 1 0 0 | 0     | 1 00  | 1.00 |
| Lane Util. Factor       | 1.00                                            | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00 | 1.00     | 1.00  | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         | 0.94                                            | 0.99     |       |       | 0.94     |          |      |          | 0.86  |       | 0.99  |      |
| Frt                     | 0.050                                           | 0.991    |       |       | 0.932    |          |      |          | 0.850 |       |       |      |
| Flt Protected           | 0.950                                           | 4700     | •     | •     | 0.976    | <u>^</u> | •    | 1010     | 454/  | •     | 0.993 | -    |
| Satd. Flow (prot)       | 1662                                            | 1792     | 0     | 0     | 1551     | 0        | 0    | 1818     | 1516  | 0     | 1788  | 0    |
| Flt Permitted           | 0.687                                           | 4700     | •     | •     | 0.726    | <u>^</u> | •    | 1010     | 1000  | •     | 0.828 | -    |
| Satd. Flow (perm)       | 1127                                            | 1792     | 0     | 0     | 1142     | 0        | 0    | 1818     | 1309  | 0     | 1481  | 0    |
| Right Turn on Red       |                                                 |          | No    |       |          | No       |      |          | No    |       |       | No   |
| Satd. Flow (RTOR)       |                                                 |          |       |       |          |          |      |          |       |       |       |      |
| Link Speed (mph)        |                                                 | 25       |       |       | 25       |          |      | 25       |       |       | 25    |      |
| Link Distance (ft)      |                                                 | 504      |       |       | 403      |          |      | 370      |       |       | 405   |      |
| Travel Time (s)         |                                                 | 13.7     |       |       | 11.0     |          |      | 10.1     |       |       | 11.0  |      |
| Confl. Peds. (#/hr)     | 33                                              |          | 33    | 33    |          | 33       | 48   |          | 48    | 48    |       | 48   |
| Confl. Bikes (#/hr)     |                                                 |          | 10    |       |          | 10       |      |          | 10    |       |       | 10   |
| Peak Hour Factor        | 0.86                                            | 0.86     | 0.86  | 0.92  | 0.92     | 0.92     | 0.87 | 0.87     | 0.87  | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 5%                                              | 1%       | 0%    | 2%    | 2%       | 2%       | 2%   | 1%       | 3%    | 2%    | 2%    | 2%   |
| Adj. Flow (vph)         | 192                                             | 471      | 29    | 54    | 0        | 54       | 0    | 443      | 172   | 27    | 152   | 0    |
| Shared Lane Traffic (%) |                                                 |          |       |       |          |          |      |          |       |       |       |      |
| Lane Group Flow (vph)   | 192                                             | 500      | 0     | 0     | 108      | 0        | 0    | 443      | 172   | 0     | 179   | 0    |
| Turn Type               | Perm                                            | NA       |       | Perm  | NA       |          |      | NA       | Perm  | Perm  | NA    |      |
| Protected Phases        |                                                 | 2        |       |       | 6        |          |      | 4        |       |       | 8     |      |
| Permitted Phases        | 2                                               |          |       | 6     |          |          |      |          | 4     | 8     |       |      |
| Detector Phase          | 2                                               | 2        |       | 6     | 6        |          |      | 4        | 4     | 8     | 8     |      |
| Switch Phase            |                                                 |          |       |       |          |          |      |          |       |       |       |      |
| Minimum Initial (s)     | 7.0                                             | 7.0      |       | 7.0   | 7.0      |          |      | 7.0      | 7.0   | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0                                            | 17.0     |       | 17.0  | 17.0     |          |      | 17.0     | 17.0  | 17.0  | 17.0  |      |
| Total Split (s)         | 22.0                                            | 22.0     |       | 22.0  | 22.0     |          |      | 30.0     | 30.0  | 30.0  | 30.0  |      |
| Total Split (%)         | 36.7%                                           | 36.7%    |       | 36.7% | 36.7%    |          |      | 50.0%    | 50.0% | 50.0% | 50.0% |      |
| Yellow Time (s)         | 3.0                                             | 3.0      |       | 3.0   | 3.0      |          |      | 3.0      | 3.0   | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0                                             | 1.0      |       | 1.0   | 1.0      |          |      | 1.0      | 1.0   | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    | 0.0                                             | 0.0      |       |       | 0.0      |          |      | 0.0      | 0.0   |       | 0.0   |      |
| Total Lost Time (s)     | 4.0                                             | 4.0      |       |       | 4.0      |          |      | 4.0      | 4.0   |       | 4.0   |      |
| Lead/Lag                |                                                 |          |       |       |          |          |      |          |       |       |       |      |
| Lead-Lag Optimize?      |                                                 |          |       |       |          |          |      |          |       |       |       |      |
| Recall Mode             | C-Min                                           | C-Min    |       | C-Min | C-Min    |          |      | None     | None  | None  | None  |      |
| Act Effct Green (s)     | 31.1                                            | 31.1     |       |       | 31.1     |          |      | 19.3     | 19.3  |       | 19.3  |      |
| Actuated g/C Ratio      | 0.52                                            | 0.52     |       |       | 0.52     |          |      | 0.32     | 0.32  |       | 0.32  |      |
| v/c Ratio               | 0.33                                            | 0.54     |       |       | 0.18     |          |      | 0.76     | 0.41  |       | 0.38  |      |
| Control Delay           | 13.7                                            | 17.1     |       |       | 6.1      |          |      | 26.4     | 17.5  |       | 16.7  |      |
| Queue Delay             | 0.0                                             | 0.0      |       |       | 0.0      |          |      | 0.1      | 0.0   |       | 0.0   |      |
| Total Delay             | 13.7                                            | 17.1     |       |       | 6.1      |          |      | 26.5     | 17.5  |       | 16.7  |      |
| LOS                     | В                                               | В        |       |       | А        |          |      | С        | В     |       | В     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9     | Ø10  |
|-------------------------|--------|------|
| Lane Configurations     |        |      |
| Traffic Volume (vph)    |        |      |
| Future Volume (vph)     |        |      |
| Ideal Flow (vphpl)      |        |      |
| Storage Length (ft)     |        |      |
| Storage Lanes           |        |      |
| Taper Length (ft)       |        |      |
| Lane Util. Factor       |        |      |
| Ped Bike Factor         |        |      |
| Frt                     |        |      |
| Fit Protected           |        |      |
|                         |        |      |
| Satd. Flow (prot)       |        |      |
| Flt Permitted           |        |      |
| Satd. Flow (perm)       |        |      |
| Right Turn on Red       |        |      |
| Satd. Flow (RTOR)       |        |      |
| Link Speed (mph)        |        |      |
| Link Distance (ft)      |        |      |
| Travel Time (s)         |        |      |
| Confl. Peds. (#/hr)     |        |      |
| Confl. Bikes (#/hr)     |        |      |
| Peak Hour Factor        |        |      |
| Heavy Vehicles (%)      |        |      |
| Adj. Flow (vph)         |        |      |
| Shared Lane Traffic (%) |        |      |
| Lane Group Flow (vph)   |        |      |
| Turn Type               |        |      |
| Protected Phases        | 9      | 10   |
| Permitted Phases        |        |      |
| Detector Phase          |        |      |
| Switch Phase            |        |      |
| Minimum Initial (s)     | 2.0    | 2.0  |
| Minimum Split (s)       | 4.0    | 4.0  |
| Total Split (s)         | 4.0    | 4.0  |
| Total Split (%)         | 7%     | 7%   |
| Yellow Time (s)         | 2.0    | 2.0  |
| All-Red Time (s)        | 0.0    | 0.0  |
| Lost Time Adjust (s)    |        |      |
| Total Lost Time (s)     |        |      |
| Lead/Lag                |        |      |
| Lead-Lag Optimize?      |        |      |
| Recall Mode             | None   | None |
| Act Effct Green (s)     | 1.0110 |      |
| Actuated g/C Ratio      |        |      |
| v/c Ratio               |        |      |
| Control Delay           |        |      |
| Queue Delay             |        |      |
| Total Delay             |        |      |
| LOS                     |        |      |
|                         |        |      |

## New Haven Two-Way Study 26: York Street & George Street

|                               | ٦            | -          | $\mathbf{r}$ | 4         | -          | *          | 1   | Ť    | ۲    | $\mathbf{b}$ | Ļ    | ~   |
|-------------------------------|--------------|------------|--------------|-----------|------------|------------|-----|------|------|--------------|------|-----|
| Lane Group                    | EBL          | EBT        | EBR          | WBL       | WBT        | WBR        | NBL | NBT  | NBR  | SBL          | SBT  | SBR |
| Approach Delay                |              | 16.2       |              |           | 6.1        |            |     | 24.0 |      |              | 16.7 |     |
| Approach LOS                  |              | В          |              |           | А          |            |     | С    |      |              | В    |     |
| Stops (vph)                   | 106          | 256        |              |           | 35         |            |     | 321  | 106  |              | 115  |     |
| Fuel Used(gal)                | 2            | 4          |              |           | 1          |            |     | 5    | 1    |              | 2    |     |
| CO Emissions (g/hr)           | 110          | 303        |              |           | 42         |            |     | 315  | 99   |              | 110  |     |
| NOx Emissions (g/hr)          | 21           | 59         |              |           | 8          |            |     | 61   | 19   |              | 21   |     |
| VOC Emissions (g/hr)          | 26           | 70         |              |           | 10         |            |     | 73   | 23   |              | 25   |     |
| Dilemma Vehicles (#)          | 0            | 0          |              |           | 0          |            |     | 0    | 0    |              | 0    |     |
| Queue Length 50th (ft)        | 34           | 103        |              |           | 8          |            |     | 141  | 48   |              | 49   |     |
| Queue Length 95th (ft)        | 110          | #315       |              |           | m30        |            |     | 183  | 75   |              | 78   |     |
| Internal Link Dist (ft)       |              | 424        |              |           | 323        |            |     | 290  |      |              | 325  |     |
| Turn Bay Length (ft)          |              |            |              |           |            |            |     |      | 100  |              |      |     |
| Base Capacity (vph)           | 583          | 928        |              |           | 591        |            |     | 787  | 567  |              | 641  |     |
| Starvation Cap Reductn        | 0            | 0          |              |           | 0          |            |     | 26   | 0    |              | 0    |     |
| Spillback Cap Reductn         | 0            | 0          |              |           | 0          |            |     | 0    | 0    |              | 0    |     |
| Storage Cap Reductn           | 0            | 0          |              |           | 0          |            |     | 0    | 0    |              | 0    |     |
| Reduced v/c Ratio             | 0.33         | 0.54       |              |           | 0.18       |            |     | 0.58 | 0.30 |              | 0.28 |     |
| Intersection Summary          |              |            |              |           |            |            |     |      |      |              |      |     |
| 21                            | Other        |            |              |           |            |            |     |      |      |              |      |     |
| Cycle Length: 60              |              |            |              |           |            |            |     |      |      |              |      |     |
| Actuated Cycle Length: 60     |              |            |              |           |            |            |     |      |      |              |      |     |
| Offset: 9 (15%), Referenced   | d to phase i | 2:EBTL ar  | nd 6:WB      | FL, Start | of Yellow  |            |     |      |      |              |      |     |
| Natural Cycle: 60             |              |            |              |           |            |            |     |      |      |              |      |     |
| Control Type: Actuated-Coo    | ordinated    |            |              |           |            |            |     |      |      |              |      |     |
| Maximum v/c Ratio: 0.76       |              |            |              |           |            |            |     |      |      |              |      |     |
| Intersection Signal Delay: 1  |              |            |              |           | tersection |            |     |      |      |              |      |     |
| Intersection Capacity Utiliza | ation 72.5%  |            |              | IC        | U Level    | of Service | e C |      |      |              |      |     |
| Analysis Period (min) 15      |              |            |              |           |            |            |     |      |      |              |      |     |
| # 95th percentile volume      |              |            | leue may     | be longe  | er.        |            |     |      |      |              |      |     |
| Queue shown is maximu         |              |            |              |           |            |            |     |      |      |              |      |     |
| m Volume for 95th percer      | ntile queue  | is metered | d by upst    | ream sig  | nal.       |            |     |      |      |              |      |     |

Splits and Phases: 26: York Street & George Street

| ₩ø9 | ∠      | ₩ø1 | 0 ∎ø4 |  |
|-----|--------|-----|-------|--|
| 4 s | 22 s   | 4s  | 30 s  |  |
|     | Ø6 (R) |     | ▼Ø8   |  |
|     | 22 s   |     | 30 s  |  |

|                              | -        | $\mathbf{r}$ | -    | -    | 1          | 1          |
|------------------------------|----------|--------------|------|------|------------|------------|
| Lane Group                   | EBT      | EBR          | WBL  | WBT  | NBL        | NBR        |
| Lane Configurations          | <b>†</b> |              |      | •    | Y          |            |
| Traffic Volume (vph)         | 125      | 0            | 0    | 415  | 0          | 140        |
| Future Volume (vph)          | 125      | 0            | 0    | 415  | 0          | 140        |
| Ideal Flow (vphpl)           | 1900     | 1900         | 1900 | 1900 | 1900       | 1900       |
| Lane Util. Factor            | 1.00     | 1.00         | 1.00 | 1.00 | 1.00       | 1.00       |
| Ped Bike Factor              |          |              |      |      |            |            |
| Frt                          |          |              |      |      | 0.865      |            |
| Flt Protected                |          |              |      |      |            |            |
| Satd. Flow (prot)            | 1801     | 0            | 0    | 1717 | 1589       | 0          |
| Flt Permitted                |          |              |      |      |            |            |
| Satd. Flow (perm)            | 1801     | 0            | 0    | 1717 | 1589       | 0          |
| Link Speed (mph)             | 25       |              |      | 25   | 25         |            |
| Link Distance (ft)           | 419      |              |      | 502  | 522        |            |
| Travel Time (s)              | 11.4     |              |      | 13.7 | 14.2       |            |
| Confl. Peds. (#/hr)          |          |              |      |      | 173        | 173        |
| Confl. Bikes (#/hr)          |          | 15           |      |      |            | 15         |
| Peak Hour Factor             | 0.92     | 0.92         | 0.89 | 0.89 | 0.62       | 0.62       |
| Heavy Vehicles (%)           | 2%       | 2%           | 0%   | 7%   | 1%         | 0%         |
| Adj. Flow (vph)              | 136      | 0            | 0    | 466  | 0          | 226        |
| Shared Lane Traffic (%)      |          |              |      |      |            |            |
| Lane Group Flow (vph)        | 136      | 0            | 0    | 466  | 226        | 0          |
| Sign Control                 | Stop     |              |      | Stop | Stop       |            |
| Intersection Summary         |          |              |      |      |            |            |
| Area Type:                   | Other    |              |      |      |            |            |
| Control Type: Unsignalized   |          |              |      |      |            |            |
| Intersection Capacity Utiliz |          |              |      | IC   | CU Level o | of Service |
| Analysis Period (min) 15     |          |              |      |      |            |            |

| tersection              |      |
|-------------------------|------|
| tersection Delay, s/veh | 12.6 |
| tersection LOS          | В    |

| Movement                   | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
|----------------------------|------|------|------|------|------|------|
| Lane Configurations        | 1    |      |      | 1    | Y    |      |
| Traffic Vol, veh/h         | 125  | 0    | 0    | 415  | 0    | 140  |
| Future Vol, veh/h          | 125  | 0    | 0    | 415  | 0    | 140  |
| Peak Hour Factor           | 0.92 | 0.92 | 0.89 | 0.89 | 0.62 | 0.62 |
| Heavy Vehicles, %          | 2    | 2    | 0    | 7    | 1    | 0    |
| Mvmt Flow                  | 136  | 0    | 0    | 466  | 0    | 226  |
| Number of Lanes            | 1    | 0    | 0    | 1    | 1    | 0    |
| Approach                   | EB   |      |      | WB   | NB   |      |
| Opposing Approach          | WB   |      |      | EB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    | 0    |      |
| Conflicting Approach Left  |      |      |      | NB   | EB   |      |
| Conflicting Lanes Left     | 0    |      |      | 1    | 1    |      |
| Conflicting Approach Right | NB   |      |      |      | WB   |      |
| Conflicting Lanes Right    | 1    |      |      | 0    | 1    |      |
| HCM Control Delay          | 9.3  |      |      | 15   | 9.8  |      |
| HCM LOS                    | А    |      |      | В    | А    |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 |
|------------------------|-------|-------|-------|
| Vol Left, %            | 0%    | 0%    | 0%    |
| Vol Thru, %            | 0%    | 100%  | 100%  |
| Vol Right, %           | 100%  | 0%    | 0%    |
| Sign Control           | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 140   | 125   | 415   |
| LT Vol                 | 0     | 0     | 0     |
| Through Vol            | 0     | 125   | 415   |
| RT Vol                 | 140   | 0     | 0     |
| Lane Flow Rate         | 226   | 136   | 466   |
| Geometry Grp           | 1     | 1     | 1     |
| Degree of Util (X)     | 0.297 | 0.19  | 0.612 |
| Departure Headway (Hd) | 4.731 | 5.024 | 4.723 |
| Convergence, Y/N       | Yes   | Yes   | Yes   |
| Сар                    | 754   | 707   | 760   |
| Service Time           | 2.797 | 3.107 | 2.788 |
| HCM Lane V/C Ratio     | 0.3   | 0.192 | 0.613 |
| HCM Control Delay      | 9.8   | 9.3   | 15    |
| HCM Lane LOS           | А     | А     | В     |
| HCM 95th-tile Q        | 1.2   | 0.7   | 4.2   |

New Haven Two-Way StudyExistin32: 340 George Street Garage/High Street & George Street

Existing Volumes under 2-way Scenario Street Timing Plan: EVENING PEAK HOUR

|                               | ≯          | <b>→</b> | $\mathbf{r}$ | •                      | +     | *    | 1    | Ť     | 1    | 1    | ţ     | ~    |
|-------------------------------|------------|----------|--------------|------------------------|-------|------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT      | EBR          | WBL                    | WBT   | WBR  | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            | \$       |              |                        | \$    |      |      | \$    |      |      | \$    |      |
| Traffic Volume (vph)          | 90         | 460      | 5            | 5                      | 200   | 25   | 25   | 10    | 50   | 50   | 10    | 25   |
| Future Volume (vph)           | 90         | 460      | 5            | 5                      | 200   | 25   | 25   | 10    | 50   | 50   | 10    | 25   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900         | 1900                   | 1900  | 1900 | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00         | 1.00                   | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |          |              |                        |       |      |      |       |      |      |       |      |
| Frt                           |            | 0.999    |              |                        | 0.985 |      |      | 0.921 |      |      | 0.960 |      |
| Flt Protected                 |            | 0.992    |              |                        | 0.999 |      |      | 0.986 |      |      | 0.971 |      |
| Satd. Flow (prot)             | 0          | 1787     | 0            | 0                      | 1772  | 0    | 0    | 1635  | 0    | 0    | 1678  | 0    |
| Flt Permitted                 |            | 0.992    |              |                        | 0.999 |      |      | 0.986 |      |      | 0.971 |      |
| Satd. Flow (perm)             | 0          | 1787     | 0            | 0                      | 1772  | 0    | 0    | 1635  | 0    | 0    | 1678  | 0    |
| Link Speed (mph)              |            | 25       |              |                        | 25    |      |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 403      |              |                        | 487   |      |      | 120   |      |      | 398   |      |
| Travel Time (s)               |            | 11.0     |              |                        | 13.3  |      |      | 3.3   |      |      | 10.9  |      |
| Confl. Peds. (#/hr)           | 25         |          | 64           | 64                     |       | 25   | 14   |       | 14   | 14   |       | 14   |
| Confl. Bikes (#/hr)           |            |          | 10           |                        |       | 10   |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.81       | 0.81     | 0.81         | 0.95                   | 0.88  | 0.88 | 0.64 | 0.64  | 0.64 | 0.76 | 0.76  | 0.76 |
| Heavy Vehicles (%)            | 1%         | 2%       | 2%           | 2%                     | 2%    | 2%   | 2%   | 2%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 111        | 568      | 6            | 5                      | 227   | 28   | 39   | 16    | 78   | 66   | 13    | 33   |
| Shared Lane Traffic (%)       |            |          |              |                        |       |      |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 685      | 0            | 0                      | 260   | 0    | 0    | 133   | 0    | 0    | 112   | 0    |
| Sign Control                  |            | Free     |              |                        | Free  |      |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |          |              |                        |       |      |      |       |      |      |       |      |
| Area Type:                    | Other      |          |              |                        |       |      |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |          |              |                        |       |      |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 63.5% | )        |              | ICU Level of Service B |       |      |      |       |      |      |       |      |
| Analysis Period (min) 15      |            |          |              |                        |       |      |      |       |      |      |       |      |

#### Intersection

Int Delay, s/veh

11

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      | ¢    |      |      | \$   |      |      | ¢    |      |      | ÷    |      |  |
| Traffic Vol, veh/h     | 90   | 460  | 5    | 5    | 200  | 25   | 25   | 10   | 50   | 50   | 10   | 25   |  |
| Future Vol, veh/h      | 90   | 460  | 5    | 5    | 200  | 25   | 25   | 10   | 50   | 50   | 10   | 25   |  |
| Conflicting Peds, #/hr | 25   | 0    | 64   | 64   | 0    | 25   | 14   | 0    | 14   | 14   | 0    | 14   |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage, | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 81   | 81   | 81   | 95   | 88   | 88   | 64   | 64   | 64   | 76   | 76   | 76   |  |
| Heavy Vehicles, %      | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 111  | 568  | 6    | 5    | 227  | 28   | 39   | 16   | 78   | 66   | 13   | 33   |  |

| Major/Minor          | Major1 |       | Ν    | /lajor2 |     | ]   | Vinor1 |       | 1     | Vinor2 |       |       |  |
|----------------------|--------|-------|------|---------|-----|-----|--------|-------|-------|--------|-------|-------|--|
| Conflicting Flow All | 280    | 0     | 0    | 638     | 0   | 0   | 1145   | 1147  | 649   | 1130   | 1136  | 280   |  |
| Stage 1              | -      | -     | -    | -       | -   | -   | 857    | 857   | -     | 276    | 276   | -     |  |
| Stage 2              | -      | -     | -    | -       | -   | -   | 288    | 290   | -     | 854    | 860   | -     |  |
| Critical Hdwy        | 4.11   | -     | -    | 4.12    | -   | -   | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | -     | -    | -       | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Critical Hdwy Stg 2  | -      | -     | -    | -       | -   | -   | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |  |
| Follow-up Hdwy       | 2.209  | -     | -    | 2.218   | -   | -   | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver   | 1288   | -     | -    | 946     | -   | -   | 177    | 199   | 470   | 181    | 202   | 759   |  |
| Stage 1              | -      | -     | -    | -       | -   | -   | 352    | 374   | -     | 730    | 682   | -     |  |
| Stage 2              | -      | -     | -    | -       | -   | -   | 720    | 672   | -     | 353    | 373   | -     |  |
| Platoon blocked, %   |        | -     | -    |         | -   | -   |        |       |       |        |       |       |  |
| Mov Cap-1 Maneuver   |        | -     | -    | 900     | -   | -   | 134    | 161   | 442   | 120    | 163   | 737   |  |
| Mov Cap-2 Maneuver   | -      | -     | -    | -       | -   | -   | 134    | 161   | -     | 120    | 163   | -     |  |
| Stage 1              | -      | -     | -    | -       | -   | -   | 291    | 310   | -     | 623    | 665   | -     |  |
| Stage 2              | -      | -     | -    | -       | -   | -   | 663    | 655   | -     | 238    | 309   | -     |  |
|                      |        |       |      |         |     |     |        |       |       |        |       |       |  |
| Approach             | EB     |       |      | WB      |     |     | NB     |       |       | SB     |       |       |  |
| HCM Control Delay, s |        |       |      | 0.2     |     |     | 38.5   |       |       | 62.7   |       |       |  |
| HCM LOS              |        |       |      |         |     |     | E      |       |       | F      |       |       |  |
|                      |        |       |      |         |     |     |        |       |       |        |       |       |  |
| Minor Long/Major Mur | nt N   | DI n1 | ГП   | ГДТ     |     |     |        |       |       |        |       |       |  |
| Minor Lane/Major Mvr | nt N   | BLn1  | EBL  | EBT     | EBR | WBL | WBT    | WRK : | SBLn1 |        |       |       |  |
| Capacity (veh/h)     |        | 235   | 1263 | -       | -   | 900 | -      | -     | 166   |        |       |       |  |

| HCM Lane V/C Ratio    | 0.565 | 0.088 | - | - 0 | .006 | - | - | 0.674 |
|-----------------------|-------|-------|---|-----|------|---|---|-------|
| HCM Control Delay (s) | 38.5  | 8.1   | 0 | -   | 9    | 0 | - | 62.7  |
| HCM Lane LOS          | E     | Α     | А | -   | А    | А | - | F     |
| HCM 95th %tile Q(veh) | 3.1   | 0.3   | - | -   | 0    | - | - | 3.9   |

# New Haven Two-Way Study 71: York Street & North Frontage Road

| SBT         SBR           190         25           190         25           900         1900           1.00         1.00           984         771 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 190         25           190         25           900         1900           1.00         1.00           984         100                           |
| 190         25           190         25           900         1900           1.00         1.00           984         100                           |
| 190 25<br>900 1900<br>I.00 1.00<br>I.00<br>984                                                                                                     |
| 900 1900<br>I.00 1.00<br>I.00<br>984                                                                                                               |
| 1.00 1.00<br>1.00<br>984                                                                                                                           |
| 1.00<br>984                                                                                                                                        |
|                                                                                                                                                    |
| 771 0                                                                                                                                              |
| 771 0                                                                                                                                              |
|                                                                                                                                                    |
|                                                                                                                                                    |
| 771 0                                                                                                                                              |
| No                                                                                                                                                 |
|                                                                                                                                                    |
| 25                                                                                                                                                 |
| 370                                                                                                                                                |
| 10.1                                                                                                                                               |
| 10                                                                                                                                                 |
| 0.92 0.92                                                                                                                                          |
| 2% 0%                                                                                                                                              |
| 207 27                                                                                                                                             |
|                                                                                                                                                    |
| 234 0                                                                                                                                              |
| NA                                                                                                                                                 |
| 8                                                                                                                                                  |
|                                                                                                                                                    |
| 8                                                                                                                                                  |
|                                                                                                                                                    |
| 12.0                                                                                                                                               |
| 16.0                                                                                                                                               |
| 20.0                                                                                                                                               |
| .2%                                                                                                                                                |
| 3.0                                                                                                                                                |
| 1.0                                                                                                                                                |
| 0.0                                                                                                                                                |
| 4.0                                                                                                                                                |
| Lag                                                                                                                                                |
| 5                                                                                                                                                  |
| one                                                                                                                                                |
| 14.3                                                                                                                                               |
| ).16                                                                                                                                               |
| ).83                                                                                                                                               |
| 51.5                                                                                                                                               |
| 0.0                                                                                                                                                |
| 51.5                                                                                                                                               |
| E                                                                                                                                                  |
| 51.5                                                                                                                                               |
| E                                                                                                                                                  |
| 197                                                                                                                                                |
| 4                                                                                                                                                  |
|                                                                                                                                                    |

| Lane Group              | Ø3   |
|-------------------------|------|
| Lane Configurations     |      |
| Traffic Volume (vph)    |      |
| Future Volume (vph)     |      |
| Ideal Flow (vphpl)      |      |
| Lane Util. Factor       |      |
| Ped Bike Factor         |      |
|                         |      |
| Frt<br>Fit Droto at a d |      |
| Flt Protected           |      |
| Satd. Flow (prot)       |      |
| Flt Permitted           |      |
| Satd. Flow (perm)       |      |
| Right Turn on Red       |      |
| Satd. Flow (RTOR)       |      |
| Link Speed (mph)        |      |
| Link Distance (ft)      |      |
| Travel Time (s)         |      |
| Confl. Bikes (#/hr)     |      |
| Peak Hour Factor        |      |
| Heavy Vehicles (%)      |      |
| Adj. Flow (vph)         |      |
| Shared Lane Traffic (%) |      |
| Lane Group Flow (vph)   |      |
| Turn Type               |      |
| Protected Phases        | 3    |
| Permitted Phases        | J    |
| Detector Phase          |      |
| Switch Phase            |      |
|                         | 1.0  |
| Minimum Initial (s)     |      |
| Minimum Split (s)       | 24.0 |
| Total Split (s)         | 24.0 |
| Total Split (%)         | 27%  |
| Yellow Time (s)         | 4.0  |
| All-Red Time (s)        | 0.0  |
| Lost Time Adjust (s)    |      |
| Total Lost Time (s)     |      |
| Lead/Lag                |      |
| Lead-Lag Optimize?      |      |
| Recall Mode             | None |
| Act Effct Green (s)     |      |
| Actuated g/C Ratio      |      |
| v/c Ratio               |      |
| Control Delay           |      |
| Queue Delay             |      |
| Total Delay             |      |
| LOS                     |      |
| Approach Delay          |      |
|                         |      |
| Approach LOS            |      |
| Stops (vph)             |      |
| Fuel Used(gal)          |      |

New Haven Two-Way Study 71: York Street & North Frontage Road

|                                            | ٨            | -         | $\mathbf{F}$ | •         | +           | •          | 1   | 1    | 1   | 1   | ţ    | ~   |
|--------------------------------------------|--------------|-----------|--------------|-----------|-------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                                 | EBL          | EBT       | EBR          | WBL       | WBT         | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| CO Emissions (g/hr)                        |              |           |              |           | 1990        |            |     | 328  |     |     | 288  |     |
| NOx Emissions (g/hr)                       |              |           |              |           | 387         |            |     | 64   |     |     | 56   |     |
| VOC Emissions (g/hr)                       |              |           |              |           | 461         |            |     | 76   |     |     | 67   |     |
| Dilemma Vehicles (#)                       |              |           |              |           | 0           |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)                     |              |           |              |           | ~361        |            |     | 178  |     |     | 129  |     |
| Queue Length 95th (ft)                     |              |           |              |           | #464        |            |     | #273 |     |     | #235 |     |
| Internal Link Dist (ft)                    |              | 415       |              |           | 848         |            |     | 172  |     |     | 290  |     |
| Turn Bay Length (ft)                       |              |           |              |           |             |            |     |      |     |     |      |     |
| Base Capacity (vph)                        |              |           |              |           | 1590        |            |     | 480  |     |     | 314  |     |
| Starvation Cap Reductn                     |              |           |              |           | 0           |            |     | 5    |     |     | 0    |     |
| Spillback Cap Reductn                      |              |           |              |           | 0           |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn                        |              |           |              |           | 0           |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio                          |              |           |              |           | 0.93        |            |     | 0.81 |     |     | 0.75 |     |
| Intersection Summary                       |              |           |              |           |             |            |     |      |     |     |      |     |
| 71                                         | Other        |           |              |           |             |            |     |      |     |     |      |     |
| Cycle Length: 90                           |              |           |              |           |             |            |     |      |     |     |      |     |
| Actuated Cycle Length: 90                  |              |           |              |           |             |            |     |      |     |     |      |     |
| Offset: 16 (18%), Reference                | d to phase   | 6:WBTL,   | Start of     | Yellow    |             |            |     |      |     |     |      |     |
| Natural Cycle: 90                          |              |           |              |           |             |            |     |      |     |     |      |     |
| Control Type: Actuated-Coor                | rdinated     |           |              |           |             |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.93                    |              |           |              |           |             |            |     |      |     |     |      |     |
| Intersection Signal Delay: 45              |              |           |              |           | ntersectior |            |     |      |     |     |      |     |
| Intersection Capacity Utilizat             | tion 69.6%   |           |              | [(        | CU Level    | of Service | e C |      |     |     |      |     |
| Analysis Period (min) 15                   |              |           |              |           |             |            |     |      |     |     |      |     |
| <ul> <li>Volume exceeds capacit</li> </ul> | <i>y</i> 1   |           | cally infin  | iite.     |             |            |     |      |     |     |      |     |
| Queue shown is maximu                      |              |           |              |           |             |            |     |      |     |     |      |     |
| # 95th percentile volume e                 |              |           | ieue may     | / be long | er.         |            |     |      |     |     |      |     |
| Queue shown is maximul                     | m after two  | o cycles. |              |           |             |            |     |      |     |     |      |     |
| Splits and Dhasos: 71. Vo                  | vrk Straat Ø | North Er  | ontago F     | lood      |             |            |     |      |     |     |      |     |

| Splits and Phases: | 71: York Street & North Frontage Road |  |
|--------------------|---------------------------------------|--|
|                    |                                       |  |

| ✓ Ø6 (R) | ₩ A <sub>Ø3</sub> | <b>√1</b> Ø7 | s¶ de la constante de la cons |  |
|----------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 30 s     | 24 s              | 16 s         | 20 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

## New Haven Two-Way Study 74: College Street & George Street

|                         | ٦    | +                   | 7    | 4      | +         | ×    | 1    | 1    | 1    | 1      | ţ          | ~    |
|-------------------------|------|---------------------|------|--------|-----------|------|------|------|------|--------|------------|------|
| Lane Group              | EBL  | EBT                 | EBR  | WBL    | WBT       | WBR  | NBL  | NBT  | NBR  | SBL    | SBT        | SBR  |
| Lane Configurations     |      | 4                   |      |        | र्स       |      |      |      |      |        | 4          |      |
| Traffic Volume (vph)    | 0    | 450                 | 110  | 75     | 200       | 0    | 0    | 0    | 0    | 95     | 245        | 25   |
| Future Volume (vph)     | 0    | 450                 | 110  | 75     | 200       | 0    | 0    | 0    | 0    | 95     | 245        | 25   |
| Ideal Flow (vphpl)      | 1900 | 1900                | 1900 | 1900   | 1900      | 1900 | 1900 | 1900 | 1900 | 1900   | 1900       | 1900 |
| Lane Util. Factor       | 1.00 | 1.00                | 1.00 | 1.00   | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00   | 1.00       | 1.00 |
| Ped Bike Factor         | 1.00 | 0.98                | 1.00 | 1.00   | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00   | 0.96       | 1.00 |
| Frt                     |      | 0.973               |      |        |           |      |      |      |      |        | 0.991      |      |
| Flt Protected           |      | 0.775               |      |        | 0.986     |      |      |      |      |        | 0.987      |      |
| Satd. Flow (prot)       | 0    | 1519                | 0    | 0      | 1598      | 0    | 0    | 0    | 0    | 0      | 1484       | 0    |
| Flt Permitted           | 0    | 1517                | 0    | 0      | 0.564     | 0    | U    | U    | 0    | 0      | 0.987      | 0    |
| Satd. Flow (perm)       | 0    | 1519                | 0    | 0      | 914       | 0    | 0    | 0    | 0    | 0      | 1435       | 0    |
| Right Turn on Red       | 0    | 1317                | No   | 0      | 714       | No   | U    | U    | No   | 0      | 1455       | No   |
| Satd. Flow (RTOR)       |      |                     | NU   |        |           | NU   |      |      | NU   |        |            | NU   |
| Link Speed (mph)        |      | 25                  |      |        | 25        |      |      | 25   |      |        | 25         |      |
| Link Distance (ft)      |      | 487                 |      |        | 542       |      |      | 382  |      |        | 372        |      |
| Travel Time (s)         |      | 13.3                |      |        | 14.8      |      |      | 10.4 |      |        | 10.1       |      |
| Confl. Peds. (#/hr)     | 60   | 15.5                | 60   | 60     | 14.0      | 60   | 60   | 10.4 | 60   | 60     | 10.1       | 60   |
| Confl. Bikes (#/hr)     | 00   |                     | 10   | 00     |           | 10   | 00   |      | 00   | 00     |            | 10   |
| Peak Hour Factor        | 0.88 | 0.88                | 0.88 | 0.92   | 0.92      | 0.92 | 0.92 | 0.92 | 0.92 | 0.94   | 0.94       | 0.94 |
| Heavy Vehicles (%)      | 2%   | 4%                  | 4%   | 2%     | 2%        | 2%   | 2%   | 2%   | 2%   | 6%     | 0.94<br>9% | 2%   |
| Adj. Flow (vph)         | 270  | 4 <i>/</i> 0<br>511 | 4 /0 | 82     | 270       | 270  | 2 /0 | 2 /0 | 270  | 101    | 261        | 270  |
| Shared Lane Traffic (%) | 0    | 511                 | 120  | 02     | 217       | 0    | 0    | 0    | 0    | 101    | 201        | 21   |
| Lane Group Flow (vph)   | 0    | 636                 | 0    | 0      | 299       | 0    | 0    | 0    | 0    | 0      | 389        | 0    |
| Turn Type               | 0    | NA                  | 0    | Perm   | NA        | 0    | 0    | 0    | 0    | Perm   | NA         | 0    |
| Protected Phases        |      | 2                   |      | FCIIII | 6         |      |      |      |      | FCIIII | 4          |      |
| Permitted Phases        |      | 2                   |      | 6      | 0         |      |      |      |      | 4      | 4          |      |
| Detector Phase          |      | 2                   |      | 6      | 6         |      |      |      |      | 4      | 4          |      |
| Switch Phase            |      | 2                   |      | 0      | 0         |      |      |      |      | 4      | 4          |      |
| Minimum Initial (s)     |      | 7.0                 |      | 7.0    | 7.0       |      |      |      |      | 7.0    | 7.0        |      |
| Minimum Split (s)       |      | 18.0                |      | 18.0   | 18.0      |      |      |      |      | 18.0   | 18.0       |      |
| Total Split (s)         |      | 30.0                |      | 30.0   | 30.0      |      |      |      |      | 22.0   | 22.0       |      |
| Total Split (%)         |      | 50.0%               |      | 50.0%  | 50.0%     |      |      |      |      | 36.7%  | 36.7%      |      |
| Yellow Time (s)         |      | 3.0                 |      | 3.0    | 3.0       |      |      |      |      | 3.0    | 3.0        |      |
| All-Red Time (s)        |      | 1.0                 |      | 1.0    | 1.0       |      |      |      |      | 1.0    | 1.0        |      |
| Lost Time Adjust (s)    |      | 0.0                 |      | 1.0    | 0.0       |      |      |      |      | 1.0    | 0.0        |      |
| Total Lost Time (s)     |      | 4.0                 |      |        | 4.0       |      |      |      |      |        | 4.0        |      |
| Lead/Lag                |      | 7.0                 |      |        | 7.0       |      |      |      |      |        | 7.0        |      |
| Lead-Lag Optimize?      |      |                     |      |        |           |      |      |      |      |        |            |      |
| Recall Mode             |      | C-Min               |      | C-Min  | C-Min     |      |      |      |      | None   | None       |      |
| Act Effct Green (s)     |      | 29.5                |      | CIVIII | 29.5      |      |      |      |      | None   | 17.7       |      |
| Actuated g/C Ratio      |      | 0.49                |      |        | 0.49      |      |      |      |      |        | 0.30       |      |
| v/c Ratio               |      | 0.85                |      |        | 0.47      |      |      |      |      |        | 0.92       |      |
| Control Delay           |      | 28.2                |      |        | 27.8      |      |      |      |      |        | 51.9       |      |
| Queue Delay             |      | 0.0                 |      |        | 0.0       |      |      |      |      |        | 0.0        |      |
| Total Delay             |      | 28.2                |      |        | 27.8      |      |      |      |      |        | 51.9       |      |
| LOS                     |      | 20.2<br>C           |      |        | 27.0<br>C |      |      |      |      |        | D          |      |
| Approach Delay          |      | 28.2                |      |        | 27.8      |      |      |      |      |        | 51.9       |      |
| Approach LOS            |      | 20.2<br>C           |      |        | 27.0<br>C |      |      |      |      |        | D          |      |
| Stops (vph)             |      | 394                 |      |        | 211       |      |      |      |      |        | 300        |      |
|                         |      | 574                 |      |        | 211       |      |      |      |      |        | 300        |      |

Lanes, Volumes, Timings SLR

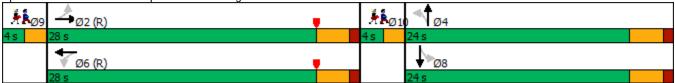
| Lane Group                  | Ø9   | Ø10  |
|-----------------------------|------|------|
| Lane Configurations         |      |      |
| Traffic Volume (vph)        |      |      |
| Future Volume (vph)         |      |      |
| Ideal Flow (vphpl)          |      |      |
| Lane Util. Factor           |      |      |
|                             |      |      |
| Ped Bike Factor             |      |      |
| Frt<br>Fit Drotoctod        |      |      |
| Flt Protected               |      |      |
| Satd. Flow (prot)           |      |      |
| Flt Permitted               |      |      |
| Satd. Flow (perm)           |      |      |
| Right Turn on Red           |      |      |
| Satd. Flow (RTOR)           |      |      |
| Link Speed (mph)            |      |      |
| Link Distance (ft)          |      |      |
| Travel Time (s)             |      |      |
| Confl. Peds. (#/hr)         |      |      |
| Confl. Bikes (#/hr)         |      |      |
| Peak Hour Factor            |      |      |
| Heavy Vehicles (%)          |      |      |
| Adj. Flow (vph)             |      |      |
| Shared Lane Traffic (%)     |      |      |
| Lane Group Flow (vph)       |      |      |
| Turn Type                   |      |      |
| Protected Phases            | 9    | 10   |
| Permitted Phases            | 9    | 10   |
|                             |      |      |
| Detector Phase              |      |      |
| Switch Phase                | 0.0  | 0.0  |
| Minimum Initial (s)         | 2.0  | 2.0  |
| Minimum Split (s)           | 4.0  | 4.0  |
| Total Split (s)             | 4.0  | 4.0  |
| Total Split (%)             | 7%   | 7%   |
| Yellow Time (s)             | 2.0  | 2.0  |
| All-Red Time (s)            | 0.0  | 0.0  |
| Lost Time Adjust (s)        |      |      |
| Total Lost Time (s)         |      |      |
| Lead/Lag                    |      |      |
| Lead-Lag Optimize?          |      |      |
| Recall Mode                 | None | None |
| Act Effct Green (s)         |      |      |
| Actuated g/C Ratio          |      |      |
| v/c Ratio                   |      |      |
| Control Delay               |      |      |
| Queue Delay                 |      |      |
| Total Delay                 |      |      |
| LOS                         |      |      |
|                             |      |      |
| Approach Delay              |      |      |
| Approach                    |      |      |
| Approach LOS<br>Stops (vph) |      |      |

#### New Haven Two-Way Study 74: College Street & George Street

|                                | _ الحر        | →      | $\mathbf{r}$ | 4         | -          | •          | 1        | Ť   | 1   | 1   | Ŧ    | ~   |
|--------------------------------|---------------|--------|--------------|-----------|------------|------------|----------|-----|-----|-----|------|-----|
| Lane Group                     | EBL           | EBT    | EBR          | WBL       | WBT        | WBR        | NBL      | NBT | NBR | SBL | SBT  | SBF |
| Fuel Used(gal)                 |               | 7      |              |           | 4          |            |          |     |     |     | 6    |     |
| CO Emissions (g/hr)            |               | 493    |              |           | 254        |            |          |     |     |     | 432  |     |
| NOx Emissions (g/hr)           |               | 96     |              |           | 49         |            |          |     |     |     | 84   |     |
| VOC Emissions (g/hr)           |               | 114    |              |           | 59         |            |          |     |     |     | 100  |     |
| Dilemma Vehicles (#)           |               | 0      |              |           | 0          |            |          |     |     |     | 0    |     |
| Queue Length 50th (ft)         |               | 200    |              |           | 92         |            |          |     |     |     | 134  |     |
| Queue Length 95th (ft)         | Ŧ             | #401   |              |           | #223       |            |          |     |     |     | #281 |     |
| Internal Link Dist (ft)        |               | 407    |              |           | 462        |            |          | 302 |     |     | 292  |     |
| Turn Bay Length (ft)           |               |        |              |           |            |            |          |     |     |     |      |     |
| Base Capacity (vph)            |               | 747    |              |           | 449        |            |          |     |     |     | 430  |     |
| Starvation Cap Reductn         |               | 0      |              |           | 0          |            |          |     |     |     | 0    |     |
| Spillback Cap Reductn          |               | 0      |              |           | 0          |            |          |     |     |     | 0    |     |
| Storage Cap Reductn            |               | 0      |              |           | 0          |            |          |     |     |     | 0    |     |
| Reduced v/c Ratio              |               | 0.85   |              |           | 0.67       |            |          |     |     |     | 0.90 |     |
| Intersection Summary           |               |        |              |           |            |            |          |     |     |     |      |     |
|                                | CBD           |        |              |           |            |            |          |     |     |     |      |     |
| Cycle Length: 60               |               |        |              |           |            |            |          |     |     |     |      |     |
| Actuated Cycle Length: 60      |               |        |              |           |            |            |          |     |     |     |      |     |
| Offset: 45 (75%), Reference    | d to phase 2: | EBT ar | nd 6:WB1     | FL, Start | of Yellow  |            |          |     |     |     |      |     |
| Natural Cycle: 80              |               |        |              |           |            |            |          |     |     |     |      |     |
| Control Type: Actuated-Coor    | rdinated      |        |              |           |            |            |          |     |     |     |      |     |
| Maximum v/c Ratio: 0.92        |               |        |              |           |            |            |          |     |     |     |      |     |
| Intersection Signal Delay: 35  |               |        |              |           | tersection |            | _        |     |     |     |      |     |
| Intersection Capacity Utilizat | tion 89.8%    |        |              | IC        | CU Level   | of Service | E        |     |     |     |      |     |
| Analysis Period (min) 15       |               |        |              |           |            |            |          |     |     |     |      |     |
| # 95th percentile volume e     |               |        | eue may      | be longe  | er.        |            |          |     |     |     |      |     |
| Queue shown is maximu          | m after two c | ycles. |              |           |            |            |          |     |     |     |      |     |
| Splits and Dhasas 74. Ca       | llogo Street  | • Coor | no Stroot    |           |            |            |          |     |     |     |      |     |
| Splits and Phases: 74: Co      | llege Street  |        | je Sileel    |           |            |            | <b>.</b> |     |     |     |      |     |

| ₽₽ <sub>Ø</sub> | 9 →ø2 (R)           | Majarakan di karakan di | 0 VØ4 |
|-----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4 s             | 30 s                | 4 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22 s  |
|                 | ₩<br>Ø6 (R)<br>30 s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |

## New Haven Two-Way Study 78: Temple Street & George Street


|                         | ≯     |          | ~    | ~     | +     | •        | •       | +     | *    | 5       | I     | 7    |
|-------------------------|-------|----------|------|-------|-------|----------|---------|-------|------|---------|-------|------|
|                         |       | -        | •    | •     |       | <u>`</u> | 7       |       | 1    |         | *     | •    |
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT   | WBR      | NBL     | NBT   | NBR  | SBL     | SBT   | SBR  |
| Lane Configurations     |       | <b>.</b> |      | - ሽ   | ef 👘  |          | <u></u> | 4Î    |      | <u></u> | 4Î    |      |
| Traffic Volume (vph)    | 100   | 385      | 155  | 50    | 200   | 25       | 50      | 125   | 50   | 170     | 100   | 25   |
| Future Volume (vph)     | 100   | 385      | 155  | 50    | 200   | 25       | 50      | 125   | 50   | 170     | 100   | 25   |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900  | 1900     | 1900    | 1900  | 1900 | 1900    | 1900  | 1900 |
| Storage Length (ft)     | 0     |          | 0    | 150   |       | 0        | 75      |       | 0    | 75      |       | 0    |
| Storage Lanes           | 0     |          | 0    | 1     |       | 0        | 1       |       | 0    | 1       |       | 1    |
| Taper Length (ft)       | 0     |          |      | 25    |       |          | 25      |       |      | 25      |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00     | 1.00    | 1.00  | 1.00 | 1.00    | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.97     |      |       | 0.99  |          | 0.95    | 0.98  |      | 0.96    | 0.98  |      |
| Frt                     |       | 0.967    |      |       | 0.983 |          |         | 0.957 |      |         | 0.970 |      |
| Flt Protected           |       | 0.992    |      | 0.950 |       |          | 0.950   |       |      | 0.950   |       |      |
| Satd. Flow (prot)       | 0     | 1531     | 0    | 1540  | 1578  | 0        | 1540    | 1513  | 0    | 1510    | 1510  | 0    |
| Flt Permitted           |       | 0.906    |      | 0.324 |       |          | 0.665   |       |      | 0.593   |       |      |
| Satd. Flow (perm)       | 0     | 1390     | 0    | 525   | 1578  | 0        | 1029    | 1513  | 0    | 903     | 1510  | 0    |
| Right Turn on Red       |       |          | No   |       |       | No       |         |       | No   |         |       | No   |
| Satd. Flow (RTOR)       |       |          |      |       |       |          |         |       |      |         |       |      |
| Link Speed (mph)        |       | 25       |      |       | 25    |          |         | 25    |      |         | 25    |      |
| Link Distance (ft)      |       | 542      |      |       | 404   |          |         | 250   |      |         | 403   |      |
| Travel Time (s)         |       | 14.8     |      |       | 11.0  |          |         | 6.8   |      |         | 11.0  |      |
| Confl. Peds. (#/hr)     | 26    |          | 26   | 26    |       | 26       | 26      |       | 26   | 26      |       | 26   |
| Confl. Bikes (#/hr)     |       |          | 10   |       |       | 10       |         |       | 10   |         |       | 10   |
| Peak Hour Factor        | 0.85  | 0.85     | 0.85 | 0.92  | 0.92  | 0.92     | 0.92    | 0.92  | 0.92 | 0.87    | 0.87  | 0.87 |
| Heavy Vehicles (%)      | 2%    | 2%       | 0%   | 2%    | 2%    | 2%       | 2%      | 2%    | 2%   | 4%      | 5%    | 2%   |
| Adj. Flow (vph)         | 118   | 453      | 182  | 54    | 217   | 27       | 54      | 136   | 54   | 195     | 115   | 29   |
| Shared Lane Traffic (%) |       |          |      |       |       |          |         |       |      |         |       |      |
| Lane Group Flow (vph)   | 0     | 753      | 0    | 54    | 244   | 0        | 54      | 190   | 0    | 195     | 144   | 0    |
| Turn Type               | Perm  | NA       |      | Perm  | NA    |          | Perm    | NA    |      | Perm    | NA    |      |
| Protected Phases        |       | 2        |      |       | 6     |          |         | 4     |      |         | 8     |      |
| Permitted Phases        | 2     |          |      | 6     |       |          | 4       |       |      | 8       |       |      |
| Detector Phase          | 2     | 2        |      | 6     | 6     |          | 4       | 4     |      | 8       | 8     |      |
| Switch Phase            |       |          |      |       |       |          |         |       |      |         |       |      |
| Minimum Initial (s)     | 7.0   | 7.0      |      | 7.0   | 7.0   |          | 7.0     | 7.0   |      | 7.0     | 7.0   |      |
| Minimum Split (s)       | 18.0  | 18.0     |      | 18.0  | 18.0  |          | 18.0    | 18.0  |      | 18.0    | 18.0  |      |
| Total Split (s)         | 28.0  | 28.0     |      | 28.0  | 28.0  |          | 24.0    | 24.0  |      | 24.0    | 24.0  |      |
| Total Split (%)         | 46.7% | 46.7%    |      | 46.7% | 46.7% |          | 40.0%   | 40.0% |      | 40.0%   | 40.0% |      |
| Yellow Time (s)         | 3.0   | 3.0      |      | 3.0   | 3.0   |          | 3.0     | 3.0   |      | 3.0     | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0      |      | 1.0   | 1.0   |          | 1.0     | 1.0   |      | 1.0     | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0      |      | 0.0   | 0.0   |          | 0.0     | 0.0   |      | 0.0     | 0.0   |      |
| Total Lost Time (s)     |       | 4.0      |      | 4.0   | 4.0   |          | 4.0     | 4.0   |      | 4.0     | 4.0   |      |
| Lead/Lag                |       |          |      |       |       |          |         |       |      |         |       |      |
| Lead-Lag Optimize?      |       |          |      |       |       |          |         |       |      |         |       |      |
| Recall Mode             | C-Min | C-Min    |      | C-Min | C-Min |          | None    | None  |      | None    | None  |      |
| Act Effct Green (s)     |       | 32.5     |      | 32.5  | 32.5  |          | 16.3    | 16.3  |      | 16.3    | 16.3  |      |
| Actuated g/C Ratio      |       | 0.54     |      | 0.54  | 0.54  |          | 0.27    | 0.27  |      | 0.27    | 0.27  |      |
| v/c Ratio               |       | 1.00     |      | 0.19  | 0.29  |          | 0.19    | 0.46  |      | 0.80    | 0.35  |      |
| Control Delay           |       | 44.1     |      | 13.0  | 11.1  |          | 16.8    | 21.0  |      | 44.0    | 18.8  |      |
| Queue Delay             |       | 0.0      |      | 0.0   | 0.0   |          | 0.0     | 0.0   |      | 0.0     | 0.0   |      |
| Total Delay             |       | 44.1     |      | 13.0  | 11.1  |          | 16.8    | 21.0  |      | 44.0    | 18.8  |      |
| LOS                     |       | D        |      | В     | В     |          | В       | С     |      | D       | В     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9    | Ø10  |
|-------------------------|-------|------|
| Lane Configurations     | ~ ~ ~ |      |
| Traffic Volume (vph)    |       |      |
| Future Volume (vph)     |       |      |
| Ideal Flow (vphpl)      |       |      |
| Storage Length (ft)     |       |      |
|                         |       |      |
| Storage Lanes           |       |      |
| Taper Length (ft)       |       |      |
| Lane Util. Factor       |       |      |
| Ped Bike Factor         |       |      |
| Frt                     |       |      |
| Flt Protected           |       |      |
| Satd. Flow (prot)       |       |      |
| Flt Permitted           |       |      |
| Satd. Flow (perm)       |       |      |
| Right Turn on Red       |       |      |
| Satd. Flow (RTOR)       |       |      |
| Link Speed (mph)        |       |      |
| Link Distance (ft)      |       |      |
| Travel Time (s)         |       |      |
| Confl. Peds. (#/hr)     |       |      |
| Confl. Bikes (#/hr)     |       |      |
| Peak Hour Factor        |       |      |
| Heavy Vehicles (%)      |       |      |
| Adj. Flow (vph)         |       |      |
| Shared Lane Traffic (%) |       |      |
| Lane Group Flow (vph)   |       |      |
| Turn Type               |       |      |
| Protected Phases        | 9     | 10   |
| Permitted Phases        |       |      |
| Detector Phase          |       |      |
| Switch Phase            |       |      |
| Minimum Initial (s)     | 2.0   | 2.0  |
| Minimum Split (s)       | 4.0   | 4.0  |
| Total Split (s)         | 4.0   | 4.0  |
| Total Split (%)         | 7%    | 7%   |
| Yellow Time (s)         | 2.0   | 2.0  |
| All-Red Time (s)        | 0.0   | 0.0  |
| Lost Time Adjust (s)    | 0.0   | 0.0  |
| Total Lost Time (s)     |       |      |
| Lead/Lag                |       |      |
| Lead-Lag Optimize?      |       |      |
| Recall Mode             | None  | None |
|                         | None  | None |
| Act Effct Green (s)     |       |      |
| Actuated g/C Ratio      |       |      |
| v/c Ratio               |       |      |
| Control Delay           |       |      |
| Queue Delay             |       |      |
| Total Delay             |       |      |
| LOS                     |       |      |

## New Haven Two-Way Study 78: Temple Street & George Street

|                               | ۶            | -         | $\mathbf{r}$ | 1           | +                   | *          | 1    | 1    | ۲   | 1    | Ļ    | ~   |
|-------------------------------|--------------|-----------|--------------|-------------|---------------------|------------|------|------|-----|------|------|-----|
| Lane Group                    | EBL          | EBT       | EBR          | WBL         | WBT                 | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                |              | 44.1      |              |             | 11.5                |            |      | 20.1 |     |      | 33.3 |     |
| Approach LOS                  |              | D         |              |             | В                   |            |      | С    |     |      | С    |     |
| Stops (vph)                   |              | 252       |              | 33          | 129                 |            | 36   | 135  |     | 146  | 91   |     |
| Fuel Used(gal)                |              | 10        |              | 0           | 2                   |            | 0    | 2    |     | 3    | 1    |     |
| CO Emissions (g/hr)           |              | 676       |              | 30          | 124                 |            | 34   | 130  |     | 186  | 88   |     |
| NOx Emissions (g/hr)          |              | 131       |              | 6           | 24                  |            | 7    | 25   |     | 36   | 17   |     |
| VOC Emissions (g/hr)          |              | 157       |              | 7           | 29                  |            | 8    | 30   |     | 43   | 20   |     |
| Dilemma Vehicles (#)          |              | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)        |              | 68        |              | 8           | 40                  |            | 14   | 55   |     | 63   | 40   |     |
| Queue Length 95th (ft)        |              | m#468     |              | 37          | 111                 |            | 36   | 99   |     | #136 | 74   |     |
| Internal Link Dist (ft)       |              | 462       |              |             | 324                 |            |      | 170  |     |      | 323  |     |
| Turn Bay Length (ft)          |              |           |              | 150         |                     |            | 75   |      |     | 75   |      |     |
| Base Capacity (vph)           |              | 753       |              | 284         | 854                 |            | 343  | 504  |     | 301  | 503  |     |
| Starvation Cap Reductn        |              | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         |              | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn           |              | 0         |              | 0           | 0                   |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             |              | 1.00      |              | 0.19        | 0.29                |            | 0.16 | 0.38 |     | 0.65 | 0.29 |     |
| Intersection Summary          |              |           |              |             |                     |            |      |      |     |      |      |     |
| JI.                           | CBD          |           |              |             |                     |            |      |      |     |      |      |     |
| Cycle Length: 60              |              |           |              |             |                     |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60     |              |           |              |             |                     |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t  | o phase 2:   | EBTL and  | d 6:WBTI     | L, Start of | <sup>•</sup> Yellow |            |      |      |     |      |      |     |
| Natural Cycle: 90             |              |           |              |             |                     |            |      |      |     |      |      |     |
| Control Type: Actuated-Coo    | rdinated     |           |              |             |                     |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 1.00       |              |           |              |             |                     |            |      |      |     |      |      |     |
| Intersection Signal Delay: 32 |              |           |              |             | tersectior          |            | _    |      |     |      |      |     |
| Intersection Capacity Utiliza | tion 88.7%   |           |              | IC          | U Level             | of Service | Ε    |      |     |      |      |     |
| Analysis Period (min) 15      |              |           |              |             |                     |            |      |      |     |      |      |     |
| # 95th percentile volume e    |              |           | ieue may     | be longe    | er.                 |            |      |      |     |      |      |     |
| Queue shown is maximu         |              |           |              | •           |                     |            |      |      |     |      |      |     |
| m Volume for 95th percent     | tile queue i | is metere | d by upst    | iream sigi  | nal.                |            |      |      |     |      |      |     |



#### New Haven Two-Way Study 80: Church Street & Crown Street

| Lane Group         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBT           Lane Configurations         Image: Configurations | SBR<br>50<br>50<br>1900<br>0<br>0<br>1.00 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Traffic Volume (vph)         50         0         50         50         300         115         105         590         0         0         225           Future Volume (vph)         50         0         50         50         300         115         105         590         0         0         225           Ideal Flow (vphpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                                                                                                                                                                                                                                                                                                                                   | 50<br>1900<br>0<br>0                      |
| Traffic Volume (vph)500505030011510559000225Future Volume (vph)500505030011510559000225Ideal Flow (vphpl)19001900190019001900190019001900190019001900Storage Length (ft)005007500Storage Lanes0010100Taper Length (ft)0151500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50<br>1900<br>0<br>0                      |
| Future Volume (vph)500505030011510559000225Ideal Flow (vphpl)190019001900190019001900190019001900190019001900Storage Length (ft)0050075000Storage Lanes0010100Taper Length (ft)015150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50<br>1900<br>0<br>0                      |
| Ideal Flow (vphpl)19001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900<br>0<br>0                            |
| Storage Length (ft)         0         0         50         0         75         0         0           Storage Lanes         0         0         1         0         1         0         0           Taper Length (ft)         0         15         15         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0                                    |
| Storage Lanes         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                         |
| Taper Length (ft)         0         15         15         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                      |
| Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| Ped Bike Factor         0.92         0.91         0.96         0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| Frt 0.932 0.958 0.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Flt Protected 0.976 0.950 0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |
| Satd. Flow (prot) 0 1391 0 1540 1216 0 1540 1338 0 0 1538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                         |
| Fit Permitted         0.516         0.694         0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                         |
| Satd. Flow (perm) 0 735 0 1023 1216 0 1540 1338 0 0 1538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                         |
| Right Turn on Red No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                        |
| Satd. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO                                        |
| Link Speed (mph) 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Link Distance (ft) 412 510 415 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |
| Travel Time (s)         11.2         13.9         11.3         14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| Confl. Peds. (#/hr) 35 35 35 35 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                        |
| Confl. Bikes (#/hr)         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                        |
| Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.92                                      |
| Heavy Vehicles (%) 0% 2% 0% 2% 4% 12% 2% 5% 2% 2% 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2%                                        |
| Parking (#/hr) 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 270                                       |
| Adj. Flow (vph) 54 0 54 54 326 125 113 634 0 0 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54                                        |
| Shared Lane Traffic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Lane Group Flow (vph) 0 108 0 54 451 0 113 634 0 0 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                         |
| Turn Type Perm NA pm+pt NA Prot NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Protected Phases 6 5 2 7 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Permitted Phases 6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |
| Detector Phase 6 6 5 2 7 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Switch Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Minimum Initial (s) 7.0 7.0 3.0 7.0 3.0 7.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |
| Minimum Split (s) 17.0 17.0 7.0 17.0 7.0 17.0 17.0 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Total Split (s) 29.0 29.0 10.0 39.0 13.0 40.0 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |
| Total Split (%) 32.2% 32.2% 11.1% 43.3% 14.4% 44.4% 30.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Yellow Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |
| All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |
| Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| Lead/Lag Lead Lead Lag Lag Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |
| Lead-Lag Optimize?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |
| Recall Mode None None None None C-Min C-Mir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| Act Effct Green (s) 27.5 34.5 34.5 12.0 42.3 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |
| Actuated g/C Ratio 0.31 0.38 0.38 0.13 0.47 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |
| v/c Ratio 0.48 0.13 0.97 0.55 1.01 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Control Delay 36.0 18.9 64.2 42.5 56.0 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |
| Queue Delay 0.5 0.0 12.4 0.0 27.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Total Delay 36.4 18.9 76.7 42.5 83.0 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |

Lanes, Volumes, Timings SLR

| Lane Group                        | Ø9   | Ø10  |  |
|-----------------------------------|------|------|--|
| Lane Configurations               |      | .510 |  |
| Traffic Volume (vph)              |      |      |  |
| Future Volume (vph)               |      |      |  |
| Ideal Flow (vphpl)                |      |      |  |
| Storage Length (ft)               |      |      |  |
| Storage Lanes                     |      |      |  |
| Taper Length (ft)                 |      |      |  |
| Lane Util. Factor                 |      |      |  |
| Ped Bike Factor                   |      |      |  |
|                                   |      |      |  |
| Frt<br>Fit Drotoctod              |      |      |  |
| Flt Protected                     |      |      |  |
| Satd. Flow (prot)                 |      |      |  |
| Flt Permitted                     |      |      |  |
| Satd. Flow (perm)                 |      |      |  |
| Right Turn on Red                 |      |      |  |
| Satd. Flow (RTOR)                 |      |      |  |
| Link Speed (mph)                  |      |      |  |
| Link Distance (ft)                |      |      |  |
| Travel Time (s)                   |      |      |  |
| Confl. Peds. (#/hr)               |      |      |  |
| Confl. Bikes (#/hr)               |      |      |  |
| Peak Hour Factor                  |      |      |  |
| Heavy Vehicles (%)                |      |      |  |
| Parking (#/hr)                    |      |      |  |
| Adj. Flow (vph)                   |      |      |  |
| Shared Lane Traffic (%)           |      |      |  |
| Lane Group Flow (vph)             |      |      |  |
| Turn Type                         |      |      |  |
| Protected Phases                  | 9    | 10   |  |
| Permitted Phases                  |      |      |  |
| Detector Phase                    |      |      |  |
| Switch Phase                      |      |      |  |
| Minimum Initial (s)               | 2.0  | 2.0  |  |
| Minimum Split (s)                 | 7.0  | 4.0  |  |
| Total Split (s)                   | 7.0  | 4.0  |  |
| Total Split (%)                   | 8%   | 4%   |  |
| Yellow Time (s)                   | 2.0  | 2.0  |  |
| All-Red Time (s)                  | 0.0  | 0.0  |  |
| Lost Time Adjust (s)              | 0.0  | 0.0  |  |
| Total Lost Time (s)               |      |      |  |
| Lead/Lag                          |      |      |  |
|                                   |      |      |  |
| Lead-Lag Optimize?<br>Recall Mode | Nono | None |  |
|                                   | None | None |  |
| Act Effct Green (s)               |      |      |  |
| Actuated g/C Ratio                |      |      |  |
| v/c Ratio                         |      |      |  |
| Control Delay                     |      |      |  |
| Queue Delay                       |      |      |  |
| Total Delay                       |      |      |  |

#### New Haven Two-Way Study 80: Church Street & Crown Street

|                                            | _ ال             | • •      | $\mathbf{F}$ | 4          | ←          | *          | 1    | 1    | 1   | $\mathbf{b}$ | ŧ    | ~   |
|--------------------------------------------|------------------|----------|--------------|------------|------------|------------|------|------|-----|--------------|------|-----|
| Lane Group                                 | EBL EI           | 3T I     | EBR          | WBL        | WBT        | WBR        | NBL  | NBT  | NBR | SBL          | SBT  | SBI |
| LOS                                        |                  | D        |              | В          | E          |            | D    | F    |     |              | D    |     |
| Approach Delay                             | 36               | o.4      |              |            | 70.5       |            |      | 76.9 |     |              | 41.4 |     |
| Approach LOS                               |                  | D        |              |            | E          |            |      | E    |     |              | D    |     |
| Stops (vph)                                |                  | 84       |              | 31         | 348        |            | 91   | 441  |     |              | 247  |     |
| Fuel Used(gal)                             |                  | 1        |              | 1          | 9          |            | 2    | 11   |     |              | 4    |     |
| CO Emissions (g/hr)                        |                  | 97       |              | 37         | 599        |            | 114  | 734  |     |              | 314  |     |
| NOx Emissions (g/hr)                       |                  | 19       |              | 7          | 116        |            | 22   | 143  |     |              | 61   |     |
| VOC Emissions (g/hr)                       |                  | 23       |              | 9          | 139        |            | 26   | 170  |     |              | 73   |     |
| Dilemma Vehicles (#)                       |                  | 0        |              | 0          | 0          |            | 0    | 0    |     |              | 0    |     |
| Queue Length 50th (ft)                     |                  | 56       |              | 19         | 244        |            | 61   | ~423 |     |              | 155  |     |
| Queue Length 95th (ft)                     | 1                | 80       |              | 43         | #440       |            | m#84 | #614 |     |              | m220 |     |
| Internal Link Dist (ft)                    | 3                | 32       |              |            | 430        |            |      | 335  |     |              | 442  |     |
| Turn Bay Length (ft)                       |                  |          |              | 50         |            |            | 75   |      |     |              |      |     |
| Base Capacity (vph)                        | 2                | 32       |              | 431        | 472        |            | 205  | 629  |     |              | 449  |     |
| Starvation Cap Reductn                     |                  | 0        |              | 0          | 0          |            | 0    | 12   |     |              | 0    |     |
| Spillback Cap Reductn                      |                  | 16       |              | 0          | 27         |            | 0    | 46   |     |              | 0    |     |
| Storage Cap Reductn                        |                  | 0        |              | 0          | 0          |            | 0    | 0    |     |              | 0    |     |
| Reduced v/c Ratio                          | 0.               | 50       |              | 0.13       | 1.01       |            | 0.55 | 1.09 |     |              | 0.67 |     |
| Intersection Summary                       |                  |          |              |            |            |            |      |      |     |              |      |     |
| 71                                         | CBD              |          |              |            |            |            |      |      |     |              |      |     |
| Cycle Length: 90                           |                  |          |              |            |            |            |      |      |     |              |      |     |
| Actuated Cycle Length: 90                  |                  |          |              |            |            |            |      |      |     |              |      |     |
| Offset: 67 (74%), Reference                | d to phase 4:NI  | 3T and   | 8:SBT        | , Start of | Yellow     |            |      |      |     |              |      |     |
| Natural Cycle: 120                         |                  |          |              |            |            |            |      |      |     |              |      |     |
| Control Type: Actuated-Cool                | rdinated         |          |              |            |            |            |      |      |     |              |      |     |
| Maximum v/c Ratio: 1.01                    |                  |          |              |            |            |            |      |      |     |              |      |     |
| Intersection Signal Delay: 65              |                  |          |              |            | tersectior |            |      |      |     |              |      |     |
| Intersection Capacity Utilization          | tion 80.6%       |          |              | IC         | U Level o  | of Service | e D  |      |     |              |      |     |
| Analysis Period (min) 15                   |                  |          |              |            |            |            |      |      |     |              |      |     |
| <ul> <li>Volume exceeds capacit</li> </ul> |                  |          | y infini     | te.        |            |            |      |      |     |              |      |     |
| Queue shown is maximu                      |                  |          |              |            |            |            |      |      |     |              |      |     |
| # 95th percentile volume e                 |                  |          | e may        | be longe   | r.         |            |      |      |     |              |      |     |
| Queue shown is maximu                      |                  |          |              |            |            |            |      |      |     |              |      |     |
| m Volume for 95th percent                  | tile queue is me | etered b | y upstr      | ream sigr  | nal.       |            |      |      |     |              |      |     |

#### Splits and Phases: 80: Church Street & Crown Street

| 11 <sub>09</sub> | ₹ø2       |                 |  |
|------------------|-----------|-----------------|--|
| 7 s 🛛            | 39 s      | 4 s 40 s        |  |
|                  | <u></u>   | ↓ Ø8 (R) ↓ ▲ Ø7 |  |
|                  | 29 s 10 s | 27 s 13 s       |  |

## New Haven Two-Way Study 81: Church Street & George Street

|                         | ٦     |       |      |       | -     |      |          | *     | •    | 1        | I     |      |
|-------------------------|-------|-------|------|-------|-------|------|----------|-------|------|----------|-------|------|
|                         |       | -     | •    | -     | •     |      |          | T     | -    | *        | ÷     | *    |
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     | ሻ     | 4     |      | - ሽ   | 4     |      | <u>۲</u> | 4     |      | <u>۲</u> | 4     |      |
| Traffic Volume (vph)    | 250   | 260   | 155  | 75    | 100   | 110  | 75       | 335   | 70   | 50       | 200   | 75   |
| Future Volume (vph)     | 250   | 260   | 155  | 75    | 100   | 110  | 75       | 335   | 70   | 50       | 200   | 75   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 150   |       | 0    | 150   |       | 0    | 0        |       | 0    | 75       |       | 0    |
| Storage Lanes           | 1     |       | 0    | 1     |       | 0    | 1        |       | 0    | 1        |       | 0    |
| Taper Length (ft)       | 25    |       |      | 25    |       |      | 0        |       |      | 15       |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 0.96  | 0.98  |      |       | 0.95  |      |          | 0.98  |      |          | 0.97  |      |
| Frt                     |       | 0.944 |      |       | 0.922 |      |          | 0.974 |      |          | 0.959 |      |
| Flt Protected           | 0.950 |       |      | 0.950 |       |      | 0.950    |       |      | 0.950    |       |      |
| Satd. Flow (prot)       | 1510  | 1466  | 0    | 1481  | 1374  | 0    | 1540     | 1518  | 0    | 1540     | 1518  | 0    |
| Flt Permitted           | 0.430 |       |      | 0.196 |       |      | 0.950    |       |      | 0.950    |       |      |
| Satd. Flow (perm)       | 658   | 1466  | 0    | 306   | 1374  | 0    | 1540     | 1518  | 0    | 1540     | 1518  | 0    |
| Right Turn on Red       |       |       | No   |       |       | No   |          |       | No   |          |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |      |          |       |      |          |       |      |
| Link Speed (mph)        |       | 25    |      |       | 25    |      |          | 25    |      |          | 25    |      |
| Link Distance (ft)      |       | 404   |      |       | 524   |      |          | 453   |      |          | 415   |      |
| Travel Time (s)         |       | 11.0  |      |       | 14.3  |      |          | 12.4  |      |          | 11.3  |      |
| Confl. Peds. (#/hr)     | 20    |       | 20   | 20    |       | 20   |          |       | 20   |          |       | 20   |
| Confl. Bikes (#/hr)     |       |       | 10   | 20    |       | 10   |          |       | 10   |          |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.85  | 0.85  | 0.85 | 0.91     | 0.91  | 0.91 | 0.92     | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 4%    | 3%    | 6%   | 6%    | 2%    | 8%   | 2%       | 4%    | 5%   | 2%       | 2%    | 0%   |
| Adj. Flow (vph)         | 272   | 283   | 168  | 88    | 118   | 129  | 82       | 368   | 77   | 54       | 217   | 82   |
| Shared Lane Traffic (%) |       |       |      |       |       |      |          |       |      |          |       |      |
| Lane Group Flow (vph)   | 272   | 451   | 0    | 88    | 247   | 0    | 82       | 445   | 0    | 54       | 299   | 0    |
| Turn Type               | pm+pt | NA    |      | pm+pt | NA    |      | Prot     | NA    |      | Prot     | NA    |      |
| Protected Phases        | 1     | 6     |      | 5     | 2     |      | 7        | 4     |      | 3        | 8     |      |
| Permitted Phases        | 6     |       |      | 2     |       |      |          |       |      |          |       |      |
| Detector Phase          | 1     | 6     |      | 5     | 2     |      | 7        | 4     |      | 3        | 8     |      |
| Switch Phase            |       |       |      |       |       |      |          |       |      |          |       |      |
| Minimum Initial (s)     | 3.0   | 7.0   |      | 3.0   | 7.0   |      | 3.0      | 7.0   |      | 3.0      | 7.0   |      |
| Minimum Split (s)       | 7.0   | 17.0  |      | 7.0   | 17.0  |      | 7.0      | 17.0  |      | 7.0      | 17.0  |      |
| Total Split (s)         | 13.0  | 35.0  |      | 7.0   | 29.0  |      | 14.0     | 26.0  |      | 11.0     | 23.0  |      |
| Total Split (%)         | 14.4% | 38.9% |      | 7.8%  | 32.2% |      | 15.6%    | 28.9% |      | 12.2%    | 25.6% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0      | 3.0   |      | 3.0      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0      | 1.0   |      | 1.0      | 1.0   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 4.0   | 4.0   |      | 4.0   | 4.0   |      | 4.0      | 4.0   |      | 4.0      | 4.0   |      |
| Lead/Lag                | Lag   | Lead  |      | Lag   | Lead  |      | Lag      | Lead  |      | Lag      | Lead  |      |
| Lead-Lag Optimize?      | 5     |       |      | 5     |       |      | 5        |       |      | 5        |       |      |
| Recall Mode             | None  | None  |      | None  | None  |      | None     | C-Min |      | None     | C-Min |      |
| Act Effct Green (s)     | 35.3  | 29.7  |      | 23.4  | 20.4  |      | 7.9      | 35.1  |      | 5.4      | 32.7  |      |
| Actuated g/C Ratio      | 0.39  | 0.33  |      | 0.26  | 0.23  |      | 0.09     | 0.39  |      | 0.06     | 0.36  |      |
| v/c Ratio               | 0.75  | 0.93  |      | 0.75  | 0.79  |      | 0.61     | 0.75  |      | 0.58     | 0.54  |      |
| Control Delay           | 41.5  | 57.6  |      | 61.7  | 51.0  |      | 57.9     | 38.5  |      | 55.0     | 19.3  |      |
| Queue Delay             | 1.5   | 2.5   |      | 0.0   | 0.0   |      | 0.0      | 35.4  |      | 0.0      | 0.0   |      |
| Total Delay             | 43.0  | 60.1  |      | 61.7  | 51.0  |      | 57.9     | 73.9  |      | 55.0     | 19.3  |      |
| LOS                     | D     | E     |      | E     | D     |      | E        | E     |      | D        | В     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Fit Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
|                         |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 7.0  | 4.0  |
| Total Split (s)         | 7.0  | 4.0  |
| Total Split (%)         | 8%   | 4%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     | None | None |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |
|                         |      |      |

## New Haven Two-Way Study 81: Church Street & George Street

|                               | ۶           | -         | $\mathbf{r}$ | 4          | -          | •          | 1    | t    | 1   | 1    | ţ    | ~   |
|-------------------------------|-------------|-----------|--------------|------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                    | EBL         | EBT       | EBR          | WBL        | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                |             | 53.7      |              |            | 53.8       |            |      | 71.4 |     |      | 24.8 |     |
| Approach LOS                  |             | D         |              |            | D          |            |      | E    |     |      | С    |     |
| Stops (vph)                   | 170         | 360       |              | 56         | 193        |            | 72   | 284  |     | 53   | 160  |     |
| Fuel Used(gal)                | 4           | 8         |              | 1          | 4          |            | 1    | 6    |     | 1    | 3    |     |
| CO Emissions (g/hr)           | 253         | 537       |              | 104        | 270        |            | 101  | 407  |     | 66   | 186  |     |
| NOx Emissions (g/hr)          | 49          | 104       |              | 20         | 52         |            | 20   | 79   |     | 13   | 36   |     |
| VOC Emissions (g/hr)          | 59          | 124       |              | 24         | 63         |            | 23   | 94   |     | 15   | 43   |     |
| Dilemma Vehicles (#)          | 0           | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)        | 106         | 240       |              | 30         | 131        |            | 45   | 218  |     | 34   | 60   |     |
| Queue Length 95th (ft)        | #202        | #421      |              | #71        | 192        |            | 90   | #470 |     | m57  | #286 |     |
| Internal Link Dist (ft)       |             | 324       |              |            | 444        |            |      | 373  |     |      | 335  |     |
| Turn Bay Length (ft)          | 150         |           |              | 150        |            |            |      |      |     | 75   |      |     |
| Base Capacity (vph)           | 366         | 504       |              | 118        | 381        |            | 171  | 592  |     | 119  | 552  |     |
| Starvation Cap Reductn        | 0           | 16        |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         | 22          | 0         |              | 0          | 0          |            | 0    | 168  |     | 0    | 0    |     |
| Storage Cap Reductn           | 0           | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             | 0.79        | 0.92      |              | 0.75       | 0.65       |            | 0.48 | 1.05 |     | 0.45 | 0.54 |     |
| Intersection Summary          |             |           |              |            |            |            |      |      |     |      |      |     |
|                               | CBD         |           |              |            |            |            |      |      |     |      |      |     |
| Cycle Length: 90              |             |           |              |            |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 90     |             |           |              |            |            |            |      |      |     |      |      |     |
| Offset: 74 (82%), Reference   | ed to phase | 4:NBT a   | nd 8:SBT     | , Start of | Yellow     |            |      |      |     |      |      |     |
| Natural Cycle: 90             |             |           |              |            |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Coc    | ordinated   |           |              |            |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.93       |             |           |              |            |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 5  |             |           |              |            | tersectior |            |      |      |     |      |      |     |
| Intersection Capacity Utiliza | ntion 72.4% |           |              | IC         | U Level o  | of Service | e C  |      |     |      |      |     |
| Analysis Period (min) 15      |             |           |              |            |            |            |      |      |     |      |      |     |
| # 95th percentile volume      |             |           | ieue may     | be longe   | r.         |            |      |      |     |      |      |     |
| Queue shown is maximu         |             |           |              |            |            |            |      |      |     |      |      |     |
| m Volume for 95th percen      | tile queue  | is metere | d by upst    | ream sigr  | nal.       |            |      |      |     |      |      |     |

| 11 <sub>Ø9</sub> | <b>★</b> Ø2            | ▶ Ø1        | 10 Ø4 (R)  | Ø3          |
|------------------|------------------------|-------------|------------|-------------|
| 7 s              | 29 s                   | 13 s        | 4 s 26 s   | 11 s        |
|                  | <b>↓</b> <sub>26</sub> | <b>√</b> Ø5 | ↓ Ø8 (R) ↓ | <b>▲</b> Ø7 |
|                  | 35 s                   | 7 s         | 23 s       | 14 s        |

## New Haven Two-Way Study 1: Church Street & Chapel Street

|                         | ≯     | →     | $\rightarrow$ | -     | -      | •    | 1     | Ť     | ۲    | 1     | ↓     | ~    |
|-------------------------|-------|-------|---------------|-------|--------|------|-------|-------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR           | WBL   | WBT    | WBR  | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     | ٦.    | ef 👘  |               |       | र्स कि |      | ٦     | eî 🗧  |      |       | 4     |      |
| Traffic Volume (vph)    | 26    | 186   | 26            | 52    | 294    | 83   | 78    | 423   | 72   | 26    | 155   | 52   |
| Future Volume (vph)     | 26    | 186   | 26            | 52    | 294    | 83   | 78    | 423   | 72   | 26    | 155   | 52   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900          | 1900  | 1900   | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               |       | -1%   |               |       | -3%    |      |       | -6%   |      |       | -2%   |      |
| Storage Length (ft)     | 50    |       | 0             | 0     |        | 0    | 75    |       | 0    | 0     |       | 0    |
| Storage Lanes           | 1     |       | 0             | 0     |        | 0    | 1     |       | 0    | 0     |       | 0    |
| Taper Length (ft)       | 25    |       |               | 0     |        |      | 25    |       |      | 25    |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00          | 0.95  | 0.95   | 0.95 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         | 0.79  | 0.93  |               |       | 0.84   |      |       | 0.91  |      |       | 0.92  |      |
| Frt                     |       | 0.982 |               |       | 0.971  |      |       | 0.978 |      |       | 0.970 |      |
|                         | 0.950 |       |               |       | 0.994  |      | 0.950 |       |      |       | 0.994 |      |
| Satd. Flow (prot)       | 1578  | 1395  | 0             | 0     | 2416   | 0    | 1394  | 1367  | 0    | 0     | 1446  | 0    |
|                         | 0.356 |       | -             | -     | 0.820  | -    | 0.950 |       | -    | -     | 0.917 |      |
| Satd. Flow (perm)       | 465   | 1395  | 0             | 0     | 1921   | 0    | 1394  | 1367  | 0    | 0     | 1334  | 0    |
| Right Turn on Red       |       |       | No            | -     |        | No   |       |       | No   | -     |       | No   |
| Satd. Flow (RTOR)       |       |       |               |       |        |      |       |       |      |       |       |      |
| Link Speed (mph)        |       | 25    |               |       | 25     |      |       | 25    |      |       | 25    |      |
| Link Distance (ft)      |       | 413   |               |       | 476    |      |       | 522   |      |       | 476   |      |
| Travel Time (s)         |       | 11.3  |               |       | 13.0   |      |       | 14.2  |      |       | 13.0  |      |
| Confl. Peds. (#/hr)     | 218   |       | 218           | 291   |        | 291  |       |       | 229  | 229   |       | 229  |
| Confl. Bikes (#/hr)     | 210   |       | 10            | 271   |        | 10   |       |       | 10   |       |       | 10   |
| Peak Hour Factor        | 0.79  | 0.79  | 0.79          | 0.90  | 0.90   | 0.90 | 0.88  | 0.88  | 0.88 | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 0%    | 9%    | 2%            | 2%    | 14%    | 5%   | 16%   | 10%   | 16%  | 2%    | 2%    | 2%   |
| Adj. Flow (vph)         | 33    | 235   | 33            | 58    | 327    | 92   | 89    | 481   | 82   | 28    | 168   | 57   |
| Shared Lane Traffic (%) |       |       |               |       |        |      |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 33    | 268   | 0             | 0     | 477    | 0    | 89    | 563   | 0    | 0     | 253   | 0    |
|                         | Perm  | NA    |               | Perm  | NA     |      | Prot  | NA    |      | Perm  | NA    |      |
| Protected Phases        |       | 6     |               |       | 2      |      | 7     | 4     |      |       | 8     |      |
| Permitted Phases        | 6     |       |               | 2     |        |      |       |       |      | 8     |       |      |
| Detector Phase          | 6     | 6     |               | 2     | 2      |      | 7     | 4     |      | 8     | 8     |      |
| Switch Phase            |       |       |               |       |        |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |               | 7.0   | 7.0    |      | 3.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |               | 17.0  | 17.0   |      | 7.0   | 17.0  |      | 17.0  | 17.0  |      |
| Total Split (s)         | 32.0  | 32.0  |               | 32.0  | 32.0   |      | 15.0  | 47.0  |      | 32.0  | 32.0  |      |
|                         | 35.6% | 35.6% |               | 35.6% | 35.6%  |      | 16.7% | 52.2% |      | 35.6% | 35.6% |      |
| Yellow Time (s)         | 3.0   | 3.0   |               | 3.0   | 3.0    |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |               | 1.0   | 1.0    |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0   |               |       | 0.0    |      | 0.0   | 0.0   |      |       | 0.0   |      |
| Total Lost Time (s)     | 4.0   | 4.0   |               |       | 4.0    |      | 4.0   | 4.0   |      |       | 4.0   |      |
| Lead/Lag                |       |       |               |       |        |      | Lag   |       |      | Lead  | Lead  |      |
| Lead-Lag Optimize?      |       |       |               |       |        |      | - 3   |       |      |       |       |      |
|                         | None  | None  |               | None  | None   |      | None  | C-Min |      | C-Min | C-Min |      |
| Act Effct Green (s)     | 25.2  | 25.2  |               |       | 25.2   |      | 8.1   | 51.6  |      |       | 40.9  |      |
| Actuated g/C Ratio      | 0.28  | 0.28  |               |       | 0.28   |      | 0.09  | 0.57  |      |       | 0.45  |      |
| v/c Ratio               | 0.25  | 0.69  |               |       | 0.89   |      | 0.71  | 0.72  |      |       | 0.42  |      |
| Control Delay           | 29.5  | 38.2  |               |       | 50.4   |      | 55.2  | 17.5  |      |       | 23.3  |      |
| Queue Delay             | 0.0   | 0.0   |               |       | 0.0    |      | 0.0   | 0.1   |      |       | 0.0   |      |
| Total Delay             | 29.5  | 38.2  |               |       | 50.4   |      | 55.2  | 17.6  |      |       | 23.3  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Grade (%)               |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 7.0  | 4.0  |
| Total Split (s)         | 7.0  | 4.0  |
| Total Split (%)         | 8%   | 4%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| ,,                      |      |      |

#### New Haven Two-Way Study 1: Church Street & Chapel Street

|                                 | •          | →         | $\mathbf{F}$ | 1          | -          | *                   | ٩.   | 1     | 1   | 1   | Ŧ    | ~   |  |
|---------------------------------|------------|-----------|--------------|------------|------------|---------------------|------|-------|-----|-----|------|-----|--|
| ane Group                       | EBL        | EBT       | EBR          | WBL        | WBT        | WBR                 | NBL  | NBT   | NBR | SBL | SBT  | SBR |  |
| _OS                             | С          | D         |              |            | D          |                     | E    | В     |     |     | С    |     |  |
| Approach Delay                  |            | 37.3      |              |            | 50.4       |                     |      | 22.7  |     |     | 23.3 |     |  |
| Approach LOS                    |            | D         |              |            | D          |                     |      | С     |     |     | С    |     |  |
| Stops (vph)                     | 22         | 184       |              |            | 388        |                     | 77   | 393   |     |     | 169  |     |  |
| Fuel Used(gal)                  | 0          | 3         |              |            | 8          |                     | 2    | 5     |     |     | 3    |     |  |
| CO Emissions (g/hr)             | 23         | 217       |              |            | 533        |                     | 106  | 382   |     |     | 189  |     |  |
| NOx Emissions (g/hr)            | 5          | 42        |              |            | 104        |                     | 21   | 74    |     |     | 37   |     |  |
| /OC Emissions (g/hr)            | 5          | 50        |              |            | 124        |                     | 25   | 89    |     |     | 44   |     |  |
| Dilemma Vehicles (#)            | 0          | 0         |              |            | 0          |                     | 0    | 0     |     |     | 0    |     |  |
| Queue Length 50th (ft)          | 14         | 132       |              |            | 132        |                     | 52   | 321   |     |     | 109  |     |  |
| Queue Length 95th (ft)          | 34         | 179       |              |            | #211       |                     | m70  | m#443 |     |     | 195  |     |  |
| nternal Link Dist (ft)          |            | 333       |              |            | 396        |                     |      | 442   |     |     | 396  |     |  |
| Furn Bay Length (ft)            | 50         |           |              |            |            |                     | 75   |       |     |     |      |     |  |
| Base Capacity (vph)             | 144        | 434       |              |            | 597        |                     | 170  | 783   |     |     | 607  |     |  |
| Starvation Cap Reductn          | 0          | 0         |              |            | 0          |                     | 0    | 11    |     |     | 0    |     |  |
| Spillback Cap Reductn           | 0          | 0         |              |            | 0          |                     | 0    | 0     |     |     | 0    |     |  |
| Storage Cap Reductn             | 0          | 0         |              |            | 0          |                     | 0    | 0     |     |     | 0    |     |  |
| Reduced v/c Ratio               | 0.23       | 0.62      |              |            | 0.80       |                     | 0.52 | 0.73  |     |     | 0.42 |     |  |
| ntersection Summary             |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| 71                              | BD         |           |              |            |            |                     |      |       |     |     |      |     |  |
| Cycle Length: 90                |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| Actuated Cycle Length: 90       |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| Offset: 4 (4%), Referenced to   | phase 4:   | NBT and   | 8:SBTL,      | Start of Y | /ellow     |                     |      |       |     |     |      |     |  |
| Vatural Cycle: 80               |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| Control Type: Actuated-Coord    | dinated    |           |              |            |            |                     |      |       |     |     |      |     |  |
| Maximum v/c Ratio: 0.89         |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| Intersection Signal Delay: 33.3 |            |           |              |            |            | Intersection LOS: C |      |       |     |     |      |     |  |
| ntersection Capacity Utilizati  | on 78.3%   |           |              | IC         | CU Level o | of Service          | D    |       |     |     |      |     |  |
| Analysis Period (min) 15        |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| 95th percentile volume ex       |            |           | eue may      | be longe   | er.        |                     |      |       |     |     |      |     |  |
| Queue shown is maximum          |            |           |              |            |            |                     |      |       |     |     |      |     |  |
| m Volume for 95th percenti      | le aueue i | s metered | d by upst    | ream sigr  | nal.       |                     |      |       |     |     |      |     |  |

| ₩ø9 | ₩<br>Ø2                | <u>.</u> | Ø10 Ø4 (R) | •           |
|-----|------------------------|----------|------------|-------------|
| 7 s | 32 s                   | 4 s      | 47 s       |             |
|     | <b>↓</b> <sub>Ø6</sub> |          | Ø8 (R)     | <b>▲</b> Ø7 |
|     | 32 s                   |          | 32 s       | 15 s        |

## New Haven Two-Way Study 3: College Street & Chapel Street

|                         | ٨     | +     | $\mathbf{i}$ | 4     | +     | •    | •    | t    | *    | 1     | Ļ     | -    |
|-------------------------|-------|-------|--------------|-------|-------|------|------|------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR          | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | \$    | 2011         | ۲     | ţ,    |      |      |      |      | 001   | 4     | 02   |
| Traffic Volume (vph)    | 21    | 165   | 26           | 41    | 320   | 57   | 0    | 0    | 0    | 36    | 217   | 67   |
| Future Volume (vph)     | 21    | 165   | 26           | 41    | 320   | 57   | 0    | 0    | 0    | 36    | 217   | 67   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900  | 1900  | 1900 | 1900 | 1900 | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               |       | -4%   |              |       | 5%    |      |      | -8%  |      |       | 4%    |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.95  |              | 0.84  | 0.96  |      |      |      |      |       | 0.91  |      |
| Frt                     |       | 0.984 |              |       | 0.977 |      |      |      |      |       | 0.972 |      |
| Flt Protected           |       | 0.995 |              | 0.950 |       |      |      |      |      |       | 0.994 |      |
| Satd. Flow (prot)       | 0     | 1560  | 0            | 1458  | 1352  | 0    | 0    | 0    | 0    | 0     | 1426  | 0    |
| Flt Permitted           |       | 0.946 |              | 0.613 |       |      |      |      |      |       | 0.994 |      |
| Satd. Flow (perm)       | 0     | 1468  | 0            | 787   | 1352  | 0    | 0    | 0    | 0    | 0     | 1382  | 0    |
| Right Turn on Red       |       |       | No           |       |       | No   |      |      | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |              |       |       |      |      |      |      |       |       |      |
| Link Speed (mph)        |       | 25    |              |       | 25    |      |      | 25   |      |       | 25    |      |
| Link Distance (ft)      |       | 502   |              |       | 519   |      |      | 547  |      |       | 897   |      |
| Travel Time (s)         |       | 13.7  |              |       | 14.2  |      |      | 14.9 |      |       | 24.5  |      |
| Confl. Peds. (#/hr)     | 118   |       | 118          | 118   |       | 118  |      |      |      | 118   |       | 121  |
| Confl. Bikes (#/hr)     |       |       | 10           |       |       | 10   |      |      |      |       |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92         | 0.88  | 0.88  | 0.88 | 0.92 | 0.92 | 0.92 | 0.94  | 0.94  | 0.94 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%           | 5%    | 11%   | 13%  | 2%   | 2%   | 2%   | 2%    | 3%    | 3%   |
| Adj. Flow (vph)         | 23    | 179   | 28           | 47    | 364   | 65   | 0    | 0    | 0    | 38    | 231   | 71   |
| Shared Lane Traffic (%) |       |       |              |       |       |      |      |      |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 230   | 0            | 47    | 429   | 0    | 0    | 0    | 0    | 0     | 340   | 0    |
| Turn Type               | Perm  | NA    |              | Perm  | NA    |      |      |      |      | Perm  | NA    |      |
| Protected Phases        |       | 6     |              |       | 2     |      |      |      |      |       | 8     |      |
| Permitted Phases        | 6     |       |              | 2     |       |      |      |      |      | 8     |       |      |
| Detector Phase          | 6     | 6     |              | 2     | 2     |      |      |      |      | 8     | 8     |      |
| Switch Phase            |       |       |              |       |       |      |      |      |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |              | 7.0   | 7.0   |      |      |      |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |              | 17.0  | 17.0  |      |      |      |      | 17.0  | 17.0  |      |
| Total Split (s)         | 26.0  | 26.0  |              | 26.0  | 26.0  |      |      |      |      | 26.0  | 26.0  |      |
| Total Split (%)         | 43.3% | 43.3% |              | 43.3% | 43.3% |      |      |      |      | 43.3% | 43.3% |      |
| Yellow Time (s)         | 3.0   | 3.0   |              | 3.0   | 3.0   |      |      |      |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |              | 1.0   | 1.0   |      |      |      |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |              | 0.0   | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |              | 4.0   | 4.0   |      |      |      |      |       | 4.0   |      |
| Lead/Lag                |       |       |              |       |       |      |      |      |      |       |       |      |
| Lead-Lag Optimize?      |       |       |              |       |       |      |      |      |      |       |       |      |
| Recall Mode             | C-Min | C-Min |              | C-Min | C-Min |      |      |      |      | None  | None  |      |
| Act Effct Green (s)     |       | 27.0  |              | 27.0  | 27.0  |      |      |      |      |       | 18.6  |      |
| Actuated g/C Ratio      |       | 0.45  |              | 0.45  | 0.45  |      |      |      |      |       | 0.31  |      |
| v/c Ratio               |       | 0.35  |              | 0.13  | 0.71  |      |      |      |      |       | 0.79  |      |
| Control Delay           |       | 14.9  |              | 13.8  | 25.5  |      |      |      |      |       | 33.0  |      |
| Queue Delay             |       | 0.0   |              | 0.0   | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Delay             |       | 14.9  |              | 13.8  | 25.5  |      |      |      |      |       | 33.0  |      |
| LOS                     |       | В     |              | В     | С     |      |      |      |      |       | С     |      |
| Approach Delay          |       | 14.9  |              |       | 24.3  |      |      |      |      |       | 33.0  |      |
| Approach LOS            |       | В     |              |       | С     |      |      |      |      |       | С     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Grade (%)               |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
|                         |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |
| Approach Delay          |      |      |
| Approach LOS            |      |      |
| Appivacii LUS           |      |      |

#### New Haven Two-Way Study 3: College Street & Chapel Street

|                                | ۶           | -       | $\mathbf{F}$ | ∢           | -          | •          | 1   | Ť   | 1   | $\mathbf{b}$ | Ļ    | ~   |
|--------------------------------|-------------|---------|--------------|-------------|------------|------------|-----|-----|-----|--------------|------|-----|
| Lane Group                     | EBL         | EBT     | EBR          | WBL         | WBT        | WBR        | NBL | NBT | NBR | SBL          | SBT  | SBF |
| Stops (vph)                    |             | 145     |              | 29          | 278        |            |     |     |     |              | 275  |     |
| Fuel Used(gal)                 |             | 2       |              | 0           | 5          |            |     |     |     |              | 6    |     |
| CO Emissions (g/hr)            |             | 147     |              | 28          | 328        |            |     |     |     |              | 395  |     |
| NOx Emissions (g/hr)           |             | 29      |              | 6           | 64         |            |     |     |     |              | 77   |     |
| VOC Emissions (g/hr)           |             | 34      |              | 7           | 76         |            |     |     |     |              | 92   |     |
| Dilemma Vehicles (#)           |             | 0       |              | 0           | 0          |            |     |     |     |              | 0    |     |
| Queue Length 50th (ft)         |             | 57      |              | 10          | 130        |            |     |     |     |              | 107  |     |
| Queue Length 95th (ft)         |             | 114     |              | 31          | #282       |            |     |     |     |              | #191 |     |
| Internal Link Dist (ft)        |             | 422     |              |             | 439        |            |     | 467 |     |              | 817  |     |
| Turn Bay Length (ft)           |             |         |              |             |            |            |     |     |     |              |      |     |
| Base Capacity (vph)            |             | 660     |              | 353         | 607        |            |     |     |     |              | 506  |     |
| Starvation Cap Reductn         |             | 0       |              | 0           | 0          |            |     |     |     |              | 0    |     |
| Spillback Cap Reductn          |             | 0       |              | 0           | 0          |            |     |     |     |              | 0    |     |
| Storage Cap Reductn            |             | 0       |              | 0           | 0          |            |     |     |     |              | 0    |     |
| Reduced v/c Ratio              |             | 0.35    |              | 0.13        | 0.71       |            |     |     |     |              | 0.67 |     |
| Intersection Summary           |             |         |              |             |            |            |     |     |     |              |      |     |
| Area Type: 0                   | CBD         |         |              |             |            |            |     |     |     |              |      |     |
| Cycle Length: 60               |             |         |              |             |            |            |     |     |     |              |      |     |
| Actuated Cycle Length: 60      |             |         |              |             |            |            |     |     |     |              |      |     |
| Offset: 0 (0%), Referenced t   | o phase 2:  | WBTL an | d 6:EBTI     | ., Start of | Yellow     |            |     |     |     |              |      |     |
| Natural Cycle: 60              |             |         |              |             |            |            |     |     |     |              |      |     |
| Control Type: Actuated-Coor    | rdinated    |         |              |             |            |            |     |     |     |              |      |     |
| Maximum v/c Ratio: 0.79        |             |         |              |             |            |            |     |     |     |              |      |     |
| Intersection Signal Delay: 25  |             |         |              |             | tersectior |            |     |     |     |              |      |     |
| Intersection Capacity Utilizat | tion 59.5%  |         |              | IC          | U Level    | of Service | B   |     |     |              |      |     |
| Analysis Period (min) 15       |             |         |              |             |            |            |     |     |     |              |      |     |
| # 95th percentile volume e     |             |         | ieue may     | be longe    | r.         |            |     |     |     |              |      |     |
| Queue shown is maximu          | m after two | cycles. |              |             |            |            |     |     |     |              |      |     |

Splits and Phases: 3: College Street & Chapel Street



#### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                                   | ٨          | +          | •    | 4     | +              | •          | •          | 1          | *    | 1    | ţ    | ~    |
|-----------------------------------|------------|------------|------|-------|----------------|------------|------------|------------|------|------|------|------|
| Lane Group                        | EBL        | EBT        | EBR  | WBL   | WBT            | WBR        | NBL        | NBT        | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations               |            | \$         |      |       | <del>ب</del> ا | 1          |            | đ î i      |      |      |      |      |
| Traffic Volume (vph)              | 52         | 258        | 26   | 26    | 279            | 93         | 129        | 253        | 52   | 0    | 0    | 0    |
| Future Volume (vph)               | 52         | 258        | 26   | 26    | 279            | 93         | 129        | 253        | 52   | 0    | 0    | 0    |
| Ideal Flow (vphpl)                | 1900       | 1900       | 1900 | 1900  | 1900           | 1900       | 1900       | 1900       | 1900 | 1900 | 1900 | 1900 |
| Grade (%)                         |            | -5%        |      |       | -4%            |            |            | -10%       |      |      | 5%   |      |
| Storage Length (ft)               | 50         |            | 0    | 50    |                | 100        | 125        |            | 0    | 0    |      | 0    |
| Storage Lanes                     | 0          |            | 0    | 0     |                | 1          | 1          |            | 0    | 0    |      | 0    |
| Taper Length (ft)                 | 25         |            |      | 25    |                |            | 25         |            |      | 25   |      |      |
| Lane Util. Factor                 | 1.00       | 1.00       | 1.00 | 1.00  | 1.00           | 1.00       | 0.95       | 0.95       | 0.95 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor                   |            | 0.97       |      |       | 0.98           | 0.75       |            | 0.90       |      |      |      |      |
| Frt                               |            | 0.990      |      |       | 0.00           | 0.850      |            | 0.982      |      |      |      |      |
| Flt Protected                     |            | 0.992      |      |       | 0.996          |            |            | 0.985      |      |      |      |      |
| Satd. Flow (prot)                 | 0          | 1599       | 0    | 0     | 1589           | 1352       | 0          | 2848       | 0    | 0    | 0    | 0    |
| Flt Permitted                     | Ŭ          | 0.849      | Ū    | U     | 0.958          | 1002       | Ŭ          | 0.985      | Ŭ    | Ŭ    | Ū    | Ű    |
| Satd. Flow (perm)                 | 0          | 1352       | 0    | 0     | 1506           | 1020       | 0          | 2645       | 0    | 0    | 0    | 0    |
| Right Turn on Red                 | Ū          | 1002       | No   | 0     | 1000           | No         | U          | 2010       | No   | U    | U    | No   |
| Satd. Flow (RTOR)                 |            |            | NO   |       |                | NO         |            |            | 110  |      |      | NO   |
| Link Speed (mph)                  |            | 25         |      |       | 25             |            |            | 25         |      |      | 25   |      |
| Link Distance (ft)                |            | 413        |      |       | 498            |            |            | 404        |      |      | 482  |      |
| Travel Time (s)                   |            | 11.3       |      |       | 13.6           |            |            | 11.0       |      |      | 13.1 |      |
| Confl. Peds. (#/hr)               | 112        | 11.5       | 112  | 183   | 15.0           | 183        | 112        | 11.0       | 112  |      | 13.1 |      |
| Confl. Bikes (#/hr)               | 112        |            | 10   | 105   |                | 103        | 112        |            | 10   |      |      | 10   |
| Peak Hour Factor                  | 0.92       | 0.92       | 0.92 | 0.87  | 0.87           | 0.87       | 0.90       | 0.90       | 0.90 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles (%)                | 2%         | 2%         | 2%   | 2%    | 6%             | 6%         | 10%        | 9%         | 2%   | 2%   | 2%   | 2%   |
| Adj. Flow (vph)                   | 57         | 280        | 278  | 30    | 321            | 107        | 143        | 281        | 58   | 2 /0 | 2 /8 | 2 /0 |
| Shared Lane Traffic (%)           | 57         | 200        | 20   | 50    | 521            | 107        | 145        | 201        | 50   | U    | U    | U    |
| Lane Group Flow (vph)             | 0          | 365        | 0    | 0     | 351            | 107        | 0          | 482        | 0    | 0    | 0    | 0    |
| Turn Type                         | Perm       | NA         | 0    | Perm  | NA             | Perm       | Split      | NA         | 0    | 0    | 0    | 0    |
| Protected Phases                  | r enn      | 6          |      | r enn | 2              | r enn      | 3piit<br>4 | 4          |      |      |      |      |
| Permitted Phases                  | 6          | 0          |      | 2     | 2              | 2          | 4          | 4          |      |      |      |      |
| Detector Phase                    | 6          | 6          |      | 2     | 2              | 2          | 4          | 4          |      |      |      |      |
| Switch Phase                      | 0          | 0          |      | 2     | 2              | 2          | 4          | 4          |      |      |      |      |
| Minimum Initial (s)               | 7.0        | 7.0        |      | 7.0   | 7.0            | 7.0        | 7.0        | 7.0        |      |      |      |      |
| Minimum Split (s)                 | 18.0       | 18.0       |      | 18.0  | 18.0           | 18.0       | 18.0       | 18.0       |      |      |      |      |
|                                   | 29.0       | 29.0       |      | 29.0  | 29.0           | 29.0       | 23.0       | 23.0       |      |      |      |      |
| Total Split (s)                   | 48.3%      | 48.3%      |      | 48.3% | 48.3%          | 48.3%      | 38.3%      | 38.3%      |      |      |      |      |
| Total Split (%)                   | 40.3%      |            |      | 40.3% | 40.3%          | 40.3%      | 30.3%      | 30.3%      |      |      |      |      |
| Yellow Time (s)                   | 3.0<br>1.0 | 3.0<br>1.0 |      | 1.0   | 1.0            | 1.0        | 1.0        | 3.0<br>1.0 |      |      |      |      |
| All-Red Time (s)                  | 1.0        |            |      | 1.0   |                |            | 1.0        | 0.0        |      |      |      |      |
| Lost Time Adjust (s)              |            | 0.0<br>4.0 |      |       | 0.0<br>4.0     | 0.0<br>4.0 |            | 4.0        |      |      |      |      |
| Total Lost Time (s)               |            | 4.0        |      |       | 4.0            | 4.0        |            | 4.0        |      |      |      |      |
| Lead/Lag                          |            |            |      |       |                |            |            |            |      |      |      |      |
| Lead-Lag Optimize?<br>Recall Mode | None       | Mono       |      | Nene  | None           | Nene       | C Min      | C-Min      |      |      |      |      |
|                                   | None       | None       |      | None  | None           | None       | C-Min      |            |      |      |      |      |
| Act Effct Green (s)               |            | 19.8       |      |       | 19.8           | 19.8       |            | 29.0       |      |      |      |      |
| Actuated g/C Ratio                |            | 0.33       |      |       | 0.33           | 0.33       |            | 0.48       |      |      |      |      |
| v/c Ratio                         |            | 0.82       |      |       | 0.71           | 0.32       |            | 0.35       |      |      |      |      |
| Control Delay                     |            | 33.5       |      |       | 25.2           | 16.2       |            | 13.0       |      |      |      |      |
| Queue Delay                       |            | 0.0        |      |       | 0.0            | 0.0        |            | 0.0        |      |      |      |      |
| Total Delay                       |            | 33.5       |      |       | 25.2           | 16.2       |            | 13.0       |      |      |      |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Grade (%)               |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| Total Delay             |      |      |

### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                                | ٨          | -       | $\mathbf{F}$ | •     | -          | *          | 1   | 1    | 1   | 1   | Ŧ   | ~   |
|--------------------------------|------------|---------|--------------|-------|------------|------------|-----|------|-----|-----|-----|-----|
| Lane Group                     | EBL        | EBT     | EBR          | WBL   | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT | SBR |
| LOS                            |            | С       |              |       | С          | В          |     | В    |     |     |     |     |
| Approach Delay                 |            | 33.5    |              |       | 23.1       |            |     | 13.0 |     |     |     |     |
| Approach LOS                   |            | С       |              |       | С          |            |     | В    |     |     |     |     |
| Stops (vph)                    |            | 293     |              |       | 249        | 63         |     | 276  |     |     |     |     |
| Fuel Used(gal)                 |            | 5       |              |       | 4          | 1          |     | 4    |     |     |     |     |
| CO Emissions (g/hr)            |            | 321     |              |       | 267        | 66         |     | 259  |     |     |     |     |
| NOx Emissions (g/hr)           |            | 63      |              |       | 52         | 13         |     | 50   |     |     |     |     |
| VOC Emissions (g/hr)           |            | 74      |              |       | 62         | 15         |     | 60   |     |     |     |     |
| Dilemma Vehicles (#)           |            | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Queue Length 50th (ft)         |            | 116     |              |       | 107        | 28         |     | 47   |     |     |     |     |
| Queue Length 95th (ft)         |            | 185     |              |       | 157        | 53         |     | 115  |     |     |     |     |
| Internal Link Dist (ft)        |            | 333     |              |       | 418        |            |     | 324  |     |     | 402 |     |
| Turn Bay Length (ft)           |            |         |              |       |            | 100        |     |      |     |     |     |     |
| Base Capacity (vph)            |            | 563     |              |       | 627        | 425        |     | 1378 |     |     |     |     |
| Starvation Cap Reductn         |            | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Spillback Cap Reductn          |            | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Storage Cap Reductn            |            | 0       |              |       | 0          | 0          |     | 0    |     |     |     |     |
| Reduced v/c Ratio              |            | 0.65    |              |       | 0.56       | 0.25       |     | 0.35 |     |     |     |     |
| Intersection Summary           |            |         |              |       |            |            |     |      |     |     |     |     |
|                                | CBD        |         |              |       |            |            |     |      |     |     |     |     |
| Cycle Length: 60               |            |         |              |       |            |            |     |      |     |     |     |     |
| Actuated Cycle Length: 60      |            |         |              |       |            |            |     |      |     |     |     |     |
| Offset: 50 (83%), Reference    | d to phase | 4:NBTL, | Start of Y   | ellow |            |            |     |      |     |     |     |     |
| Natural Cycle: 50              |            |         |              |       |            |            |     |      |     |     |     |     |
| Control Type: Actuated-Coo     | rdinated   |         |              |       |            |            |     |      |     |     |     |     |
| Maximum v/c Ratio: 0.82        |            |         |              |       |            |            |     |      |     |     |     |     |
| Intersection Signal Delay: 22  |            |         |              |       | tersectior |            | _   |      |     |     |     |     |
| Intersection Capacity Utilizat | tion 63.0% |         |              | IC    | CU Level o | of Service | В   |      |     |     |     |     |
| Analysis Period (min) 15       |            |         |              |       |            |            |     |      |     |     |     |     |

Splits and Phases: 11: Church Street/Whitney Avenue & Grove Street

| <b>.</b> | Ø9 |            | - 5 | i<br>Ø1 | • <b>↑</b> Ø4 (R) • |
|----------|----|------------|-----|---------|---------------------|
| 4 s      |    | 29 s       | 4 s |         | 23 s                |
|          |    | <u></u> ø6 |     |         |                     |
|          |    | 29 s       |     |         |                     |

| Lane Group              | Ø9 | Ø10 |  |  |  |
|-------------------------|----|-----|--|--|--|
| LOS                     |    |     |  |  |  |
| Approach Delay          |    |     |  |  |  |
| Approach LOS            |    |     |  |  |  |
| Stops (vph)             |    |     |  |  |  |
| Fuel Used(gal)          |    |     |  |  |  |
| CO Emissions (g/hr)     |    |     |  |  |  |
| NOx Emissions (g/hr)    |    |     |  |  |  |
| VOC Emissions (g/hr)    |    |     |  |  |  |
| Dilemma Vehicles (#)    |    |     |  |  |  |
| Queue Length 50th (ft)  |    |     |  |  |  |
| Queue Length 95th (ft)  |    |     |  |  |  |
| Internal Link Dist (ft) |    |     |  |  |  |
| Turn Bay Length (ft)    |    |     |  |  |  |
| Base Capacity (vph)     |    |     |  |  |  |
| Starvation Cap Reductn  |    |     |  |  |  |
| Spillback Cap Reductn   |    |     |  |  |  |
| Storage Cap Reductn     |    |     |  |  |  |
| Reduced v/c Ratio       |    |     |  |  |  |
| Intersection Summary    |    |     |  |  |  |

# New Haven Two-Way Study 18: Park Street & Chapel Street

|                               | ۶          | <b>→</b> | $\mathbf{F}$ | •    | -        | •          | 1    | 1    | 1    | 1    | Ļ     | ~    |
|-------------------------------|------------|----------|--------------|------|----------|------------|------|------|------|------|-------|------|
| Lane Group                    | EBL        | EBT      | EBR          | WBL  | WBT      | WBR        | NBL  | NBT  | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            |          |              |      | ę        |            |      |      |      |      | ÷     |      |
| Traffic Volume (vph)          | 0          | 0        | 0            | 52   | 294      | 0          | 0    | 0    | 0    | 26   | 222   | 62   |
| Future Volume (vph)           | 0          | 0        | 0            | 52   | 294      | 0          | 0    | 0    | 0    | 26   | 222   | 62   |
| Ideal Flow (vphpl)            | 1900       | 1900     | 1900         | 1900 | 1900     | 1900       | 1900 | 1900 | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |          |              |      |          |            |      |      |      |      |       |      |
| Frt                           |            |          |              |      |          |            |      |      |      |      | 0.973 |      |
| Flt Protected                 |            |          |              |      | 0.993    |            |      |      |      |      | 0.996 |      |
| Satd. Flow (prot)             | 0          | 0        | 0            | 0    | 1744     | 0          | 0    | 0    | 0    | 0    | 1738  | 0    |
| Flt Permitted                 |            |          |              |      | 0.993    |            |      |      |      |      | 0.996 |      |
| Satd. Flow (perm)             | 0          | 0        | 0            | 0    | 1744     | 0          | 0    | 0    | 0    | 0    | 1738  | 0    |
| Link Speed (mph)              |            | 25       |              |      | 25       |            |      | 25   |      |      | 25    |      |
| Link Distance (ft)            |            | 552      |              |      | 511      |            |      | 389  |      |      | 432   |      |
| Travel Time (s)               |            | 15.1     |              |      | 13.9     |            |      | 10.6 |      |      | 11.8  |      |
| Confl. Peds. (#/hr)           |            |          |              | 41   |          |            |      |      |      | 18   |       | 18   |
| Confl. Bikes (#/hr)           |            |          |              |      |          | 10         |      |      |      |      |       | 10   |
| Peak Hour Factor              | 0.92       | 0.92     | 0.92         | 0.85 | 0.85     | 0.85       | 0.92 | 0.92 | 0.92 | 0.90 | 0.90  | 0.90 |
| Heavy Vehicles (%)            | 2%         | 2%       | 2%           | 2%   | 5%       | 0%         | 2%   | 2%   | 2%   | 2%   | 2%    | 4%   |
| Adj. Flow (vph)               | 0          | 0        | 0            | 61   | 346      | 0          | 0    | 0    | 0    | 29   | 247   | 69   |
| Shared Lane Traffic (%)       |            |          |              |      |          |            |      |      |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 0        | 0            | 0    | 407      | 0          | 0    | 0    | 0    | 0    | 345   | 0    |
| Sign Control                  |            | Stop     |              |      | Stop     |            |      | Stop |      |      | Stop  |      |
| Intersection Summary          |            |          |              |      |          |            |      |      |      |      |       |      |
| Area Type:                    | Other      |          |              |      |          |            |      |      |      |      |       |      |
| Control Type: Unsignalized    |            |          |              |      |          |            |      |      |      |      |       |      |
| Intersection Capacity Utiliza | tion 42.3% |          |              | IC   | CU Level | of Service | A    |      |      |      |       |      |
| Analysis Period (min) 15      |            |          |              |      |          |            |      |      |      |      |       |      |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | र्भ  |      |      |      |      |      | 4    |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 52   | 294  | 0    | 0    | 0    | 0    | 26   | 222  | 62   |
| Future Vol, veh/h          | 0    | 0    | 0    | 52   | 294  | 0    | 0    | 0    | 0    | 26   | 222  | 62   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.85 | 0.85 | 0.85 | 0.92 | 0.92 | 0.92 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 5    | 0    | 2    | 2    | 2    | 2    | 2    | 4    |
| Mvmt Flow                  | 0    | 0    | 0    | 61   | 346  | 0    | 0    | 0    | 0    | 29   | 247  | 69   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      |      |      |      | SB   |      |      |
| Opposing Approach          |      |      |      |      |      |      |      |      |      |      |      |      |
| Opposing Lanes             |      |      |      | 0    |      |      |      |      |      | 0    |      |      |
| Conflicting Approach Left  |      |      |      |      |      |      |      |      |      | WB   |      |      |
| Conflicting Lanes Left     |      |      |      | 0    |      |      |      |      |      | 1    |      |      |
| Conflicting Approach Right |      |      |      | SB   |      |      |      |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      |      |      |      | 0    |      |      |
| HCM Control Delay          |      |      |      | 13.6 |      |      |      |      |      | 12.1 |      |      |
| HCM LOS                    |      |      |      | В    |      |      |      |      |      | В    |      |      |

| Lane                   | WBLn1 | SBLn1 |
|------------------------|-------|-------|
| Vol Left, %            | 15%   | 8%    |
| Vol Thru, %            | 85%   | 72%   |
| Vol Right, %           | 0%    | 20%   |
| Sign Control           | Stop  | Stop  |
| Traffic Vol by Lane    | 346   | 310   |
| LT Vol                 | 52    | 26    |
| Through Vol            | 294   | 222   |
| RT Vol                 | 0     | 62    |
| Lane Flow Rate         | 407   | 344   |
| Geometry Grp           | 1     | 1     |
| Degree of Util (X)     | 0.545 | 0.463 |
| Departure Headway (Hd) | 4.82  | 4.844 |
| Convergence, Y/N       | Yes   | Yes   |
| Сар                    | 745   | 741   |
| Service Time           | 2.875 | 2.901 |
| HCM Lane V/C Ratio     | 0.546 | 0.464 |
| HCM Control Delay      | 13.6  | 12.1  |
| HCM Lane LOS           | В     | В     |
| HCM 95th-tile Q        | 3.3   | 2.5   |

### New Haven Two-Way Study 22: York Street & Tower Parkway/Grove Street

|                         | ≯     | -     | $\rightarrow$ | -     | -     | *    | 1     | 1         | 1    | 1     | Ŧ         | ~    |
|-------------------------|-------|-------|---------------|-------|-------|------|-------|-----------|------|-------|-----------|------|
| Lane Group              | EBL   | EBT   | EBR           | WBL   | WBT   | WBR  | NBL   | NBT       | NBR  | SBL   | SBT       | SBR  |
| Lane Configurations     |       | 4     |               |       | 4     |      |       | 4         |      |       | 4         |      |
| Traffic Volume (vph)    | 26    | 310   | 26            | 26    | 253   | 41   | 21    | 83        | 26   | 52    | 103       | 16   |
| Future Volume (vph)     | 26    | 310   | 26            | 26    | 253   | 41   | 21    | 83        | 26   | 52    | 103       | 16   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900          | 1900  | 1900  | 1900 | 1900  | 1900      | 1900 | 1900  | 1900      | 1900 |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00          | 1.00  | 1.00  | 1.00 | 1.00  | 1.00      | 1.00 | 1.00  | 1.00      | 1.00 |
| Ped Bike Factor         |       | 0.98  |               |       | 0.98  |      |       | 0.93      |      |       | 0.97      |      |
| Frt                     |       | 0.990 |               |       | 0.983 |      |       | 0.973     |      |       | 0.987     |      |
| Flt Protected           |       | 0.996 |               |       | 0.996 |      |       | 0.992     |      |       | 0.985     |      |
| Satd. Flow (prot)       | 0     | 1743  | 0             | 0     | 1721  | 0    | 0     | 1617      | 0    | 0     | 1737      | 0    |
| Flt Permitted           | Ŭ     | 0.965 | U             | Ū     | 0.957 | Ū    | U     | 0.935     | Ū    | U     | 0.879     | Ű    |
| Satd. Flow (perm)       | 0     | 1684  | 0             | 0     | 1641  | 0    | 0     | 1497      | 0    | 0     | 1519      | 0    |
| Right Turn on Red       | U     | 1004  | No            | U     | 1041  | No   | 0     | 1477      | No   | 0     | 1017      | No   |
| Satd. Flow (RTOR)       |       |       | NO            |       |       | NO   |       |           | NO   |       |           | NO   |
| Link Speed (mph)        |       | 25    |               |       | 25    |      |       | 25        |      |       | 25        |      |
| Link Distance (ft)      |       | 685   |               |       | 397   |      |       | 298       |      |       | 207       |      |
| Travel Time (s)         |       | 18.7  |               |       | 10.8  |      |       | 8.1       |      |       | 5.6       |      |
|                         | 39    | 10.7  | 101           | 101   | 10.0  | 39   | 101   | 0.1       | 101  | 39    | 0.0       | 39   |
| Confl. Peds. (#/hr)     | 39    |       |               | 101   |       |      | 101   |           |      | 39    |           |      |
| Confl. Bikes (#/hr)     | 0.00  | 0.00  | 10            | 0.00  | 0.00  | 10   | 0.02  | 0.00      | 10   | 0.57  | 0.57      | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92          | 0.92  | 0.92  | 0.92 | 0.93  | 0.93      | 0.93 | 0.57  | 0.57      | 0.57 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%            | 2%    | 3%    | 3%   | 14%   | 2%        | 2%   | 2%    | 0%        | 11%  |
| Adj. Flow (vph)         | 28    | 337   | 28            | 28    | 275   | 45   | 23    | 89        | 28   | 91    | 181       | 28   |
| Shared Lane Traffic (%) |       |       |               |       |       |      | -     |           |      | -     |           |      |
| Lane Group Flow (vph)   | 0     | 393   | 0             | 0     | 348   | 0    | 0     | 140       | 0    | 0     | 300       | 0    |
| Turn Type               | Perm  | NA    |               | Perm  | NA    |      | Perm  | NA        |      | Perm  | NA        |      |
| Protected Phases        |       | 6     |               |       | 2     |      |       | 4         |      |       | 8         |      |
| Permitted Phases        | 6     |       |               | 2     |       |      | 4     |           |      | 8     |           |      |
| Detector Phase          | 6     | 6     |               | 2     | 2     |      | 4     | 4         |      | 8     | 8         |      |
| Switch Phase            |       |       |               |       |       |      |       |           |      |       |           |      |
| Minimum Initial (s)     | 4.0   | 4.0   |               | 4.0   | 4.0   |      | 4.0   | 4.0       |      | 4.0   | 4.0       |      |
| Minimum Split (s)       | 17.0  | 17.0  |               | 17.0  | 17.0  |      | 17.0  | 17.0      |      | 17.0  | 17.0      |      |
| Total Split (s)         | 30.0  | 30.0  |               | 30.0  | 30.0  |      | 22.0  | 22.0      |      | 22.0  | 22.0      |      |
| Total Split (%)         | 50.0% | 50.0% |               | 50.0% | 50.0% |      | 36.7% | 36.7%     |      | 36.7% | 36.7%     |      |
| Yellow Time (s)         | 3.0   | 3.0   |               | 3.0   | 3.0   |      | 3.0   | 3.0       |      | 3.0   | 3.0       |      |
| All-Red Time (s)        | 1.0   | 1.0   |               | 1.0   | 1.0   |      | 1.0   | 1.0       |      | 1.0   | 1.0       |      |
| Lost Time Adjust (s)    |       | 0.0   |               |       | 0.0   |      |       | 0.0       |      |       | 0.0       |      |
| Total Lost Time (s)     |       | 4.0   |               |       | 4.0   |      |       | 4.0       |      |       | 4.0       |      |
| Lead/Lag                |       |       |               |       |       |      |       |           |      |       |           |      |
| Lead-Lag Optimize?      |       |       |               |       |       |      |       |           |      |       |           |      |
| Recall Mode             | C-Min | C-Min |               | C-Min | C-Min |      | None  | None      |      | None  | None      |      |
| Act Effct Green (s)     |       | 33.2  |               |       | 33.2  |      |       | 15.6      |      |       | 15.6      |      |
| Actuated g/C Ratio      |       | 0.55  |               |       | 0.55  |      |       | 0.26      |      |       | 0.26      |      |
| v/c Ratio               |       | 0.42  |               |       | 0.38  |      |       | 0.36      |      |       | 0.76      |      |
| Control Delay           |       | 11.6  |               |       | 11.2  |      |       | 20.1      |      |       | 33.7      |      |
| Queue Delay             |       | 0.0   |               |       | 0.0   |      |       | 0.0       |      |       | 0.0       |      |
| Total Delay             |       | 11.6  |               |       | 11.2  |      |       | 20.1      |      |       | 33.7      |      |
| LOS                     |       | В     |               |       | B     |      |       | C         |      |       | C         |      |
| Approach Delay          |       | 11.6  |               |       | 11.2  |      |       | 20.1      |      |       | 33.7      |      |
| Approach LOS            |       | B     |               |       | B     |      |       | 20.1<br>C |      |       | 00.7<br>C |      |
| Stops (vph)             |       | 218   |               |       | 188   |      |       | 99        |      |       | 150       |      |
|                         |       | 210   |               |       | 100   |      |       | 11        |      |       | 100       |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
|                         |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    | 0.0  | 0.0  |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
|                         | Nono | None |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |
| Approach Delay          |      |      |
| Approach LOS            |      |      |
| Stops (vph)             |      |      |
|                         |      |      |

### New Haven Two-Way Study 22: York Street & Tower Parkway/Grove Street

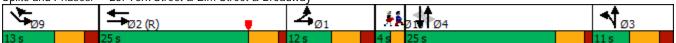
|                               | ≯          | +       | *        | 4           | Ļ          | •          | •   | 1    | *   | 1   | Ļ    | ~   |
|-------------------------------|------------|---------|----------|-------------|------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                    | EBL        | EBT     | EBR      | WBL         | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| Fuel Used(gal)                |            | 5       |          |             | 4          |            |     | 2    |     |     | 2    |     |
| CO Emissions (g/hr)           |            | 318     |          |             | 283        |            |     | 126  |     |     | 143  |     |
| NOx Emissions (g/hr)          |            | 62      |          |             | 55         |            |     | 25   |     |     | 28   |     |
| VOC Emissions (g/hr)          |            | 74      |          |             | 66         |            |     | 29   |     |     | 33   |     |
| Dilemma Vehicles (#)          |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)        |            | 68      |          |             | 58         |            |     | 40   |     |     | 96   |     |
| Queue Length 95th (ft)        |            | 173     |          |             | 151        |            |     | 79   |     |     | 93   |     |
| Internal Link Dist (ft)       |            | 605     |          |             | 317        |            |     | 218  |     |     | 127  |     |
| Turn Bay Length (ft)          |            |         |          |             |            |            |     |      |     |     |      |     |
| Base Capacity (vph)           |            | 932     |          |             | 908        |            |     | 449  |     |     | 455  |     |
| Starvation Cap Reductn        |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Spillback Cap Reductn         |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn           |            | 0       |          |             | 0          |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio             |            | 0.42    |          |             | 0.38       |            |     | 0.31 |     |     | 0.66 |     |
| Intersection Summary          |            |         |          |             |            |            |     |      |     |     |      |     |
|                               | Other      |         |          |             |            |            |     |      |     |     |      |     |
| Cycle Length: 60              |            |         |          |             |            |            |     |      |     |     |      |     |
| Actuated Cycle Length: 60     |            |         |          |             |            |            |     |      |     |     |      |     |
| Offset: 0 (0%), Referenced t  | o phase 2: | WBTL an | d 6:EBTI | _, Start of | f Yellow   |            |     |      |     |     |      |     |
| Natural Cycle: 55             |            |         |          |             |            |            |     |      |     |     |      |     |
| Control Type: Actuated-Coo    | rdinated   |         |          |             |            |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.76       |            |         |          |             |            |            |     |      |     |     |      | _   |
| Intersection Signal Delay: 18 |            |         |          |             | tersectior |            |     |      |     |     |      |     |
| Intersection Capacity Utiliza | tion 47.9% |         |          | IC          | U Level    | of Service | A   |      |     |     |      |     |
| Analysis Period (min) 15      |            |         |          |             |            |            |     |      |     |     |      |     |

Splits and Phases: 22: York Street & Tower Parkway/Grove Street

| ₩ø9 | €<br>Ø2 (R) | Maga | o≪ Ø4       |
|-----|-------------|------|-------------|
| 4 s | 30 s        | 4 s  | 22 s        |
|     |             |      | <b>₽</b> Ø8 |
|     | 30 s        |      | 22 s        |

# New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                         | ٦         | -         | *    | ł         | *_        | •     | Ť         | 1    | 1     | ţ         | ~    | <b>`</b> +  |
|-------------------------|-----------|-----------|------|-----------|-----------|-------|-----------|------|-------|-----------|------|-------------|
| Lane Group              | EBL       | EBT       | EBR  | WBT       | WBR       | NBL2  | NBT       | NBR  | SBL   | SBT       | SBR  | SEL         |
| Lane Configurations     | <u>۲</u>  | el<br>el  |      | <b>†</b>  | 1         | ٦     | ¢Î        |      |       | \$        |      | ۲           |
| Traffic Volume (vph)    | 47        | 599       | 26   | 232       | 31        | 150   | 67        | 103  | 26    | 103       | 26   | 30          |
| Future Volume (vph)     | 47        | 599       | 26   | 232       | 31        | 150   | 67        | 103  | 26    | 103       | 26   | 30          |
| Ideal Flow (vphpl)      | 1900      | 1900      | 1900 | 1900      | 1900      | 1900  | 1900      | 1900 | 1900  | 1900      | 1900 | 1900        |
| Storage Length (ft)     | 0         |           | 0    |           | 0         |       |           | 0    | 0     |           | 0    | 0           |
| Storage Lanes           | 1         |           | 0    |           | 1         |       |           | 0    | 0     |           | 0    | 1           |
| Taper Length (ft)       | 0         |           |      |           |           |       |           |      | 0     |           |      | 0           |
| Lane Util. Factor       | 1.00      | 1.00      | 1.00 | 1.00      | 1.00      | 1.00  | 1.00      | 1.00 | 1.00  | 1.00      | 1.00 | 1.00        |
| Ped Bike Factor         |           | 0.98      |      |           |           |       | 0.80      |      |       | 0.84      |      |             |
| Frt                     |           | 0.994     |      |           | 0.850     |       | 0.909     |      |       | 0.977     |      |             |
| Flt Protected           | 0.950     |           |      |           |           | 0.950 |           |      |       | 0.992     |      | 0.950       |
| Satd. Flow (prot)       | 1601      | 1644      | 0    | 1801      | 1531      | 1504  | 1141      | 0    | 0     | 1554      | 0    | 1711        |
| Flt Permitted           | 0.950     |           |      |           |           | 0.534 |           |      |       | 0.917     |      | 0.950       |
| Satd. Flow (perm)       | 1601      | 1644      | 0    | 1801      | 1531      | 845   | 1141      | 0    | 0     | 1352      | 0    | 1711        |
| Right Turn on Red       |           |           | No   |           |           |       |           | No   |       |           |      |             |
| Satd. Flow (RTOR)       |           |           |      |           |           |       |           |      |       |           |      |             |
| Link Speed (mph)        |           | 25        |      | 25        |           |       | 25        |      |       | 25        |      | 25          |
| Link Distance (ft)      |           | 309       |      | 401       |           |       | 898       |      |       | 511       |      | 228         |
| Travel Time (s)         |           | 8.4       |      | 10.9      |           |       | 24.5      |      |       | 13.9      |      | 6.2         |
| Confl. Peds. (#/hr)     |           |           | 282  |           |           |       |           | 165  | 165   |           | 376  |             |
| Confl. Bikes (#/hr)     |           |           | 15   |           | 15        |       |           | 15   |       |           | 15   |             |
| Peak Hour Factor        | 0.93      | 0.93      | 0.93 | 0.93      | 0.93      | 0.84  | 0.84      | 0.84 | 0.92  | 0.92      | 0.92 | 0.94        |
| Heavy Vehicles (%)      | 9%        | 9%        | 2%   | 2%        | 2%        | 16%   | 12%       | 21%  | 2%    | 2%        | 2%   | 2%          |
| Adj. Flow (vph)         | 51        | 644       | 28   | 249       | 33        | 179   | 80        | 123  | 28    | 112       | 28   | 32          |
| Shared Lane Traffic (%) |           |           |      |           |           |       |           |      |       |           |      |             |
| Lane Group Flow (vph)   | 51        | 672       | 0    | 249       | 33        | 179   | 203       | 0    | 0     | 168       | 0    | 32          |
| Turn Type               | Prot      | NA        | -    | NA        | Over      | D.P+P | NA        | -    | Perm  | NA        | -    | Prot        |
| Protected Phases        | 1         | 12        |      | 2         | 9         | 3     | 3 4       |      |       | 4         |      | 9           |
| Permitted Phases        |           |           |      |           |           | 4     |           |      | 4     |           |      |             |
| Detector Phase          | 1         | 12        |      | 2         | 9         | 3     | 34        |      | 4     | 4         |      | 9           |
| Switch Phase            | •         |           |      | _         |           |       | 0.        |      | •     | •         |      |             |
| Minimum Initial (s)     | 4.0       |           |      | 12.0      | 2.0       | 4.0   |           |      | 12.0  | 12.0      |      | 2.0         |
| Minimum Split (s)       | 10.0      |           |      | 18.0      | 10.0      | 10.0  |           |      | 19.0  | 19.0      |      | 10.0        |
| Total Split (s)         | 12.0      |           |      | 25.0      | 13.0      | 11.0  |           |      | 25.0  | 25.0      |      | 13.0        |
| Total Split (%)         | 13.3%     |           |      | 27.8%     | 14.4%     | 12.2% |           |      | 27.8% | 27.8%     |      | 14.4%       |
| Yellow Time (s)         | 4.0       |           |      | 4.0       | 4.0       | 4.0   |           |      | 4.0   | 4.0       |      | 4.0         |
| All-Red Time (s)        | 2.0       |           |      | 1.0       | 2.0       | 2.0   |           |      | 1.0   | 1.0       |      | 2.0         |
| Lost Time Adjust (s)    | 0.0       |           |      | 0.0       | 0.0       | 0.0   |           |      | 1.0   | 0.0       |      | 0.0         |
| Total Lost Time (s)     | 6.0       |           |      | 5.0       | 6.0       | 6.0   |           |      |       | 5.0       |      | 6.0         |
| Lead/Lag                | Lag       |           |      | Lead      | 0.0       | Lag   |           |      | Lead  | Lead      |      | 0.0         |
| Lead-Lag Optimize?      | Lug       |           |      | Luu       |           | Lug   |           |      | Luu   | LCuu      |      |             |
| Recall Mode             | None      |           |      | C-Min     | None      | None  |           |      | None  | None      |      | None        |
| Act Effct Green (s)     | 6.0       | 38.4      |      | 27.4      | 6.5       | 21.0  | 27.0      |      | None  | 17.0      |      | 6.5         |
| Actuated g/C Ratio      | 0.07      | 0.43      |      | 0.30      | 0.07      | 0.23  | 0.30      |      |       | 0.19      |      | 0.07        |
| v/c Ratio               | 0.48      | 0.45      |      | 0.30      | 0.30      | 0.23  | 0.50      |      |       | 0.66      |      | 0.26        |
| Control Delay           | 56.2      | 55.7      |      | 31.7      | 46.5      | 50.6  | 34.2      |      |       | 46.1      |      | 44.6        |
| Queue Delay             | 0.0       | 0.0       |      | 0.0       | 40.5      | 0.0   | 0.0       |      |       | 40.1      |      | 44.0<br>0.0 |
| Total Delay             | 56.2      | 55.7      |      | 31.7      | 46.5      | 50.6  | 34.2      |      |       | 46.1      |      | 44.6        |
| LOS                     | 20.2<br>E | 55.7<br>E |      | 31.7<br>C | 40.5<br>D |       | 34.Z<br>C |      |       | 40.1<br>D |      |             |
| 103                     | E         | E         |      | U         | U         | D     | ι<br>L    |      |       | U         |      | D           |


Lanes, Volumes, Timings SLR

| Lane Group     Ø10       Lane Configurations     Traffic Volume (vph)       Future Volume (vph)     Future Volume (vph) |
|-------------------------------------------------------------------------------------------------------------------------|
| Traffic Volume (vph)                                                                                                    |
|                                                                                                                         |
|                                                                                                                         |
| Ideal Flow (vphpl)                                                                                                      |
| Storage Length (ft)                                                                                                     |
| Storage Lanes                                                                                                           |
| Taper Length (ft)                                                                                                       |
| Lane Util. Factor                                                                                                       |
| Ped Bike Factor                                                                                                         |
| Frt                                                                                                                     |
| Fit Protected                                                                                                           |
|                                                                                                                         |
| Satd. Flow (prot)<br>Flt Permitted                                                                                      |
|                                                                                                                         |
| Satd. Flow (perm)                                                                                                       |
| Right Turn on Red                                                                                                       |
| Satd. Flow (RTOR)                                                                                                       |
| Link Speed (mph)                                                                                                        |
| Link Distance (ft)                                                                                                      |
| Travel Time (s)                                                                                                         |
| Confl. Peds. (#/hr)                                                                                                     |
| Confl. Bikes (#/hr)                                                                                                     |
| Peak Hour Factor                                                                                                        |
| Heavy Vehicles (%)                                                                                                      |
| Adj. Flow (vph)                                                                                                         |
| Shared Lane Traffic (%)                                                                                                 |
| Lane Group Flow (vph)                                                                                                   |
| Turn Type                                                                                                               |
| Protected Phases 10                                                                                                     |
| Permitted Phases                                                                                                        |
| Detector Phase                                                                                                          |
| Switch Phase                                                                                                            |
| Minimum Initial (s) 2.0                                                                                                 |
| Minimum Split (s) 4.0                                                                                                   |
| Total Split (s) 4.0                                                                                                     |
| Total Split (%) 4%                                                                                                      |
| Yellow Time (s) 2.0                                                                                                     |
| All-Red Time (s) 0.0                                                                                                    |
| Lost Time Adjust (s)                                                                                                    |
| Total Lost Time (s)                                                                                                     |
| Lead/Lag                                                                                                                |
| Lead-Lag Optimize?                                                                                                      |
|                                                                                                                         |
| Recall Mode None                                                                                                        |
| Act Effct Green (s)                                                                                                     |
| Actuated g/C Ratio                                                                                                      |
| v/c Ratio                                                                                                               |
| Control Delay                                                                                                           |
| Queue Delay                                                                                                             |
| Total Delay                                                                                                             |
| LOS                                                                                                                     |

### New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                                            | ≯           | →         | $\mathbf{F}$ | -        | *          | 1          | Ť    | 1   | 1   | ŧ    | -   | $\mathbf{\mathbf{b}}$ |
|--------------------------------------------|-------------|-----------|--------------|----------|------------|------------|------|-----|-----|------|-----|-----------------------|
| Lane Group                                 | EBL         | EBT       | EBR          | WBT      | WBR        | NBL2       | NBT  | NBR | SBL | SBT  | SBR | SEL                   |
| Approach Delay                             |             | 55.7      |              | 33.5     |            |            | 41.9 |     |     | 46.1 |     | 44.6                  |
| Approach LOS                               |             | E         |              | С        |            |            | D    |     |     | D    |     | D                     |
| Stops (vph)                                | 44          | 444       |              | 193      | 32         | 125        | 142  |     |     | 139  |     | 30                    |
| Fuel Used(gal)                             | 1           | 10        |              | 3        | 1          | 3          | 3    |     |     | 3    |     | 1                     |
| CO Emissions (g/hr)                        | 58          | 729       |              | 212      | 37         | 222        | 213  |     |     | 214  |     | 46                    |
| NOx Emissions (g/hr)                       | 11          | 142       |              | 41       | 7          | 43         | 41   |     |     | 42   |     | 9                     |
| VOC Emissions (g/hr)                       | 13          | 169       |              | 49       | 8          | 51         | 49   |     |     | 50   |     | 11                    |
| Dilemma Vehicles (#)                       | 0           | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0                     |
| Queue Length 50th (ft)                     | 29          | ~443      |              | 125      | 18         | 79         | 96   |     |     | 88   |     | 17                    |
| Queue Length 95th (ft)                     | #71         | #675      |              | 208      | 48         | #125       | 149  |     |     | 152  |     | 46                    |
| Internal Link Dist (ft)                    |             | 229       |              | 321      |            |            | 818  |     |     | 431  |     | 148                   |
| Turn Bay Length (ft)                       |             |           |              |          |            | 150        |      |     |     |      |     |                       |
| Base Capacity (vph)                        | 106         | 700       |              | 547      | 119        | 233        | 329  |     |     | 300  |     | 133                   |
| Starvation Cap Reductn                     | 0           | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0                     |
| Spillback Cap Reductn                      | 0           | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0                     |
| Storage Cap Reductn                        | 0           | 0         |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0                     |
| Reduced v/c Ratio                          | 0.48        | 0.96      |              | 0.46     | 0.28       | 0.77       | 0.62 |     |     | 0.56 |     | 0.24                  |
| Intersection Summary                       |             |           |              |          |            |            |      |     |     |      |     |                       |
| JI -                                       | Other       |           |              |          |            |            |      |     |     |      |     |                       |
| Cycle Length: 90                           |             |           |              |          |            |            |      |     |     |      |     |                       |
| Actuated Cycle Length: 90                  |             |           |              |          |            |            |      |     |     |      |     |                       |
| Offset: 0 (0%), Referenced t               | to phase 2: | EBWB, S   | tart of Ye   | ellow    |            |            |      |     |     |      |     |                       |
| Natural Cycle: 90                          |             |           |              |          |            |            |      |     |     |      |     |                       |
| Control Type: Actuated-Coo                 | rdinated    |           |              |          |            |            |      |     |     |      |     |                       |
| Maximum v/c Ratio: 0.96                    |             |           |              |          |            |            |      |     |     |      |     |                       |
| Intersection Signal Delay: 47              |             |           |              |          | tersectior |            |      |     |     |      |     |                       |
| Intersection Capacity Utiliza              | tion 81.9%  |           |              | IC       | U Level    | of Service | e D  |     |     |      |     |                       |
| Analysis Period (min) 15                   |             |           |              |          |            |            |      |     |     |      |     |                       |
| <ul> <li>Volume exceeds capacit</li> </ul> |             |           | cally infin  | ite.     |            |            |      |     |     |      |     |                       |
| Queue shown is maximu                      |             |           |              |          |            |            |      |     |     |      |     |                       |
| # 95th percentile volume e                 |             |           | ieue may     | be longe | er.        |            |      |     |     |      |     |                       |
| Queue shown is maximu                      | m after two | o cycles. |              |          |            |            |      |     |     |      |     |                       |

Splits and Phases: 23: York Street & Elm Street & Broadway



# New Haven Two-Way Study 24: York Street & Chapel Street

|                         | •        |            | ~    | ~          | +          | •    | •          | +            |      | 6          | I          |      |
|-------------------------|----------|------------|------|------------|------------|------|------------|--------------|------|------------|------------|------|
|                         | _        | -          | *    | *          |            | `    | 7          |              | 1    | -          | *          | -    |
| Lane Group              | EBL      | EBT        | EBR  | WBL        | WBT        | WBR  | NBL        | NBT          | NBR  | SBL        | SBT        | SBR  |
| Lane Configurations     |          | 4          |      | ሻ          | 4Î         |      | <u></u>    | 4Î           |      | ኸ          | 4Î         |      |
| Traffic Volume (vph)    | 26       | 129        | 26   | 26         | 289        | 98   | 57         | 225          | 77   | 52         | 103        | 26   |
| Future Volume (vph)     | 26       | 129        | 26   | 26         | 289        | 98   | 57         | 225          | 77   | 52         | 103        | 26   |
| Ideal Flow (vphpl)      | 1900     | 1900       | 1900 | 1900       | 1900       | 1900 | 1900       | 1900         | 1900 | 1900       | 1900       | 1900 |
| Lane Width (ft)         | 11       | 11         | 11   | 11         | 11         | 11   | 10         | 11           | 11   | 10         | 11         | 11   |
| Storage Length (ft)     | 50       |            | 0    | 50         |            | 0    | 50         |              | 0    | 50         |            | 0    |
| Storage Lanes           | 0        |            | 0    | 1          |            | 0    | 1          |              | 0    | 1          |            | 0    |
| Taper Length (ft)       | 25       |            |      | 25         |            |      | 25         |              |      | 25         |            |      |
| Lane Util. Factor       | 1.00     | 1.00       | 1.00 | 1.00       | 1.00       | 1.00 | 1.00       | 1.00         | 1.00 | 1.00       | 1.00       | 1.00 |
| Ped Bike Factor         |          | 0.97       |      | 0.91       | 0.96       |      | 0.89       | 0.96         |      | 0.93       | 0.97       |      |
| Frt                     |          | 0.981      |      |            | 0.962      |      |            | 0.962        |      |            | 0.970      |      |
| Flt Protected           |          | 0.993      |      | 0.950      |            |      | 0.950      |              |      | 0.950      |            |      |
| Satd. Flow (prot)       | 0        | 1712       | 0    | 1745       | 1555       | 0    | 1636       | 1624         | 0    | 1652       | 1690       | 0    |
| Flt Permitted           |          | 0.923      |      | 0.656      |            |      | 0.668      |              |      | 0.371      |            |      |
| Satd. Flow (perm)       | 0        | 1580       | 0    | 1099       | 1555       | 0    | 1019       | 1624         | 0    | 599        | 1690       | 0    |
| Right Turn on Red       |          |            | No   |            |            | No   |            |              | No   |            |            | No   |
| Satd. Flow (RTOR)       |          |            |      |            |            |      |            |              |      |            |            |      |
| Link Speed (mph)        |          | 25         |      |            | 25         |      |            | 25           |      |            | 25         |      |
| Link Distance (ft)      |          | 511        |      |            | 419        |      |            | 515          |      |            | 898        |      |
| Travel Time (s)         |          | 13.9       |      |            | 11.4       |      |            | 14.0         |      |            | 24.5       |      |
| Confl. Peds. (#/hr)     | 60       |            | 60   | 60         |            | 60   | 60         |              | 60   | 60         |            | 60   |
| Confl. Bikes (#/hr)     |          |            | 10   |            |            | 10   |            |              | 10   |            |            | 10   |
| Peak Hour Factor        | 0.92     | 0.92       | 0.92 | 0.92       | 0.92       | 0.92 | 0.87       | 0.87         | 0.87 | 0.92       | 0.92       | 0.92 |
| Heavy Vehicles (%)      | 2%       | 2%         | 2%   | 0%         | 4%         | 23%  | 3%         | 5%           | 2%   | 2%         | 2%         | 2%   |
| Adj. Flow (vph)         | 28       | 140        | 28   | 28         | 314        | 107  | 66         | 259          | 89   | 57         | 112        | 28   |
| Shared Lane Traffic (%) | 20       | 110        | 20   | 20         | 011        | 107  | 00         | 207          | 0,   | 01         |            | 20   |
| Lane Group Flow (vph)   | 0        | 196        | 0    | 28         | 421        | 0    | 66         | 348          | 0    | 57         | 140        | 0    |
| Turn Type               | Perm     | NA         | Ū    | Perm       | NA         | Ű    | Perm       | NA           | Ű    | Perm       | NA         | Ű    |
| Protected Phases        | T OIIII  | 6          |      | i cim      | 2          |      | 1 OIIII    | 4            |      | 1 OIIII    | 8          |      |
| Permitted Phases        | 6        | Ū          |      | 2          | 2          |      | 4          |              |      | 8          | U          |      |
| Detector Phase          | 6        | 6          |      | 2          | 2          |      | 4          | 4            |      | 8          | 8          |      |
| Switch Phase            | U        | U          |      | 2          | L          |      |            | - т          |      | 0          | 0          |      |
| Minimum Initial (s)     | 7.0      | 7.0        |      | 7.0        | 7.0        |      | 7.0        | 7.0          |      | 7.0        | 7.0        |      |
| Minimum Split (s)       | 17.0     | 17.0       |      | 17.0       | 17.0       |      | 17.0       | 17.0         |      | 17.0       | 17.0       |      |
| Total Split (s)         | 22.0     | 22.0       |      | 22.0       | 22.0       |      | 30.0       | 30.0         |      | 30.0       | 30.0       |      |
| Total Split (%)         | 36.7%    | 36.7%      |      | 36.7%      | 36.7%      |      | 50.0%      | 50.0%        |      | 50.0%      | 50.0%      |      |
| Yellow Time (s)         | 30.778   | 30.776     |      | 30.776     | 30.770     |      | 3.0        | 30.078       |      | 3.0        | 30.078     |      |
| All-Red Time (s)        | 1.0      | 3.0<br>1.0 |      | 5.0<br>1.0 | 3.0<br>1.0 |      | 3.0<br>1.0 | 3.0<br>1.0   |      | 3.0<br>1.0 | 3.0<br>1.0 |      |
| Lost Time Adjust (s)    | 1.0      | 0.0        |      |            |            |      | 0.0        | 0.0          |      | 0.0        | 0.0        |      |
| Total Lost Time (s)     |          |            |      | 0.0        | 0.0<br>4.0 |      |            |              |      |            | 4.0        |      |
| Lead/Lag                |          | 4.0        |      | 4.0        | 4.0        |      | 4.0        | 4.0          |      | 4.0        | 4.0        |      |
| Lead-Lag Optimize?      |          |            |      |            |            |      |            |              |      |            |            |      |
| Recall Mode             | C-Min    | C-Min      |      | C-Min      | C-Min      |      | None       | Mono         |      | None       | None       |      |
|                         | C-IVIII1 | 30.5       |      | 30.5       |            |      | None       | None<br>18.3 |      |            | 18.3       |      |
| Act Effct Green (s)     |          |            |      |            | 30.5       |      | 18.3       |              |      | 18.3       |            |      |
| Actuated g/C Ratio      |          | 0.51       |      | 0.51       | 0.51       |      | 0.30       | 0.30         |      | 0.30       | 0.30       |      |
| v/c Ratio               |          | 0.24       |      | 0.05       | 0.53       |      | 0.21       | 0.70         |      | 0.31       | 0.27       |      |
| Control Delay           |          | 12.6       |      | 12.4       | 18.1       |      | 15.2       | 25.8         |      | 18.9       | 15.6       |      |
| Queue Delay             |          | 0.0        |      | 0.0        | 0.0        |      | 0.0        | 0.0          |      | 0.0        | 0.0        |      |
| Total Delay             |          | 12.6       |      | 12.4       | 18.1       |      | 15.2       | 25.8         |      | 18.9       | 15.6       |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10       |
|-------------------------|------|-----------|
| Lane Configurations     |      |           |
| Traffic Volume (vph)    |      |           |
| Future Volume (vph)     |      |           |
| Ideal Flow (vphpl)      |      |           |
| Lane Width (ft)         |      |           |
| Storage Length (ft)     |      |           |
| Storage Lanes           |      |           |
| Taper Length (ft)       |      |           |
| Lane Util. Factor       |      |           |
| Ped Bike Factor         |      |           |
| Frt                     |      |           |
|                         |      |           |
| Flt Protected           |      |           |
| Satd. Flow (prot)       |      |           |
| Flt Permitted           |      |           |
| Satd. Flow (perm)       |      |           |
| Right Turn on Red       |      |           |
| Satd. Flow (RTOR)       |      |           |
| Link Speed (mph)        |      |           |
| Link Distance (ft)      |      |           |
| Travel Time (s)         |      |           |
| Confl. Peds. (#/hr)     |      |           |
| Confl. Bikes (#/hr)     |      |           |
| Peak Hour Factor        |      |           |
| Heavy Vehicles (%)      |      |           |
| Adj. Flow (vph)         |      |           |
| Shared Lane Traffic (%) |      |           |
| Lane Group Flow (vph)   |      |           |
| Turn Type               |      |           |
| Protected Phases        | 9    | 10        |
| Permitted Phases        |      |           |
| Detector Phase          |      |           |
| Switch Phase            |      |           |
| Minimum Initial (s)     | 2.0  | 2.0       |
| Minimum Split (s)       | 4.0  | 4.0       |
| Total Split (s)         | 4.0  | 4.0       |
| Total Split (%)         | 7%   | 4.0<br>7% |
| Yellow Time (s)         | 2.0  | 2.0       |
| All-Red Time (s)        | 0.0  | 2.0       |
|                         | 0.0  | 0.0       |
| Lost Time Adjust (s)    |      |           |
| Total Lost Time (s)     |      |           |
| Lead/Lag                |      |           |
| Lead-Lag Optimize?      |      |           |
| Recall Mode             | None | None      |
| Act Effct Green (s)     |      |           |
| Actuated g/C Ratio      |      |           |
| v/c Ratio               |      |           |
| Control Delay           |      |           |
| Queue Delay             |      |           |
| Total Delay             |      |           |
|                         |      |           |

# New Haven Two-Way Study 24: York Street & Chapel Street

|                                | ۶           | -       | $\mathbf{r}$ | 4           | ←          | •          | 1    | Ť    | 1   | 1    | ţ    | ~   |
|--------------------------------|-------------|---------|--------------|-------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                     | EBL         | EBT     | EBR          | WBL         | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| LOS                            |             | В       |              | В           | В          |            | В    | С    |     | В    | В    |     |
| Approach Delay                 |             | 12.6    |              |             | 17.8       |            |      | 24.1 |     |      | 16.6 |     |
| Approach LOS                   |             | В       |              |             | В          |            |      | С    |     |      | В    |     |
| Stops (vph)                    |             | 108     |              | 18          | 244        |            | 39   | 249  |     | 38   | 88   |     |
| Fuel Used(gal)                 |             | 2       |              | 0           | 4          |            | 1    | 4    |     | 1    | 2    |     |
| CO Emissions (g/hr)            |             | 116     |              | 16          | 262        |            | 40   | 271  |     | 52   | 121  |     |
| NOx Emissions (g/hr)           |             | 23      |              | 3           | 51         |            | 8    | 53   |     | 10   | 24   |     |
| VOC Emissions (g/hr)           |             | 27      |              | 4           | 61         |            | 9    | 63   |     | 12   | 28   |     |
| Dilemma Vehicles (#)           |             | 0       |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)         |             | 32      |              | 4           | 81         |            | 18   | 110  |     | 16   | 38   |     |
| Queue Length 95th (ft)         |             | 105     |              | 23          | #287       |            | 35   | 149  |     | 36   | 62   |     |
| Internal Link Dist (ft)        |             | 431     |              |             | 339        |            |      | 435  |     |      | 818  |     |
| Turn Bay Length (ft)           |             |         |              | 50          |            |            | 50   |      |     | 50   |      |     |
| Base Capacity (vph)            |             | 804     |              | 559         | 791        |            | 441  | 703  |     | 259  | 732  |     |
| Starvation Cap Reductn         |             | 0       |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn          |             | 0       |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn            |             | 0       |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio              |             | 0.24    |              | 0.05        | 0.53       |            | 0.15 | 0.50 |     | 0.22 | 0.19 |     |
| Intersection Summary           |             |         |              |             |            |            |      |      |     |      |      |     |
| JI -                           | Other       |         |              |             |            |            |      |      |     |      |      |     |
| Cycle Length: 60               |             |         |              |             |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60      |             |         |              |             |            |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t   | o phase 2:  | WBTL an | d 6:EBTl     | _, Start of | Yellow     |            |      |      |     |      |      |     |
| Natural Cycle: 60              |             |         |              |             |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Cool    | rdinated    |         |              |             |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.70        |             |         |              |             |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 18  |             |         |              |             | tersectior |            |      |      |     |      |      |     |
| Intersection Capacity Utilizat | tion 65.0%  |         |              | IC          | U Level o  | of Service | e C  |      |     |      |      |     |
| Analysis Period (min) 15       |             |         |              |             |            |            |      |      |     |      |      |     |
| # 95th percentile volume e     |             |         | ieue may     | be longe    | r.         |            |      |      |     |      |      |     |
| Queue shown is maximu          | m after two | cycles. |              |             |            |            |      |      |     |      |      |     |

Splits and Phases: 24: York Street & Chapel Street

| ₩ø9 | €<br>Ø2 (R) | • | ≹∎ø1 | • <b>↑</b> Ø4 |  |
|-----|-------------|---|------|---------------|--|
| 4 s | 22 s        |   | 4s   | 30 s          |  |
|     | →<br>Ø6 (R) | • |      | ✓Ø8           |  |
|     | 22 s        |   |      | 30 s          |  |

### New Haven Two-Way Study 25: York Street & Crown Street

|                               | ۶           | -    | $\mathbf{F}$ | ∢    | ←        | •          | 1    | Ť     | ۲    | 1    | Ļ     | ~    |
|-------------------------------|-------------|------|--------------|------|----------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL         | EBT  | EBR          | WBL  | WBT      | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |             |      |              |      | 4        |            |      | र्भ   |      |      | 4     |      |
| Traffic Volume (vph)          | 0           | 0    | 0            | 26   | 93       | 77         | 36   | 408   | 0    | 0    | 129   | 26   |
| Future Volume (vph)           | 0           | 0    | 0            | 26   | 93       | 77         | 36   | 408   | 0    | 0    | 129   | 26   |
| Ideal Flow (vphpl)            | 1900        | 1900 | 1900         | 1900 | 1900     | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00        | 1.00 | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |             |      |              |      |          |            |      |       |      |      |       |      |
| Frt                           |             |      |              |      | 0.947    |            |      |       |      |      | 0.977 |      |
| Flt Protected                 |             |      |              |      | 0.993    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (prot)             | 0           | 0    | 0            | 0    | 1679     | 0          | 0    | 1773  | 0    | 0    | 1759  | 0    |
| Flt Permitted                 |             |      |              |      | 0.993    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (perm)             | 0           | 0    | 0            | 0    | 1679     | 0          | 0    | 1773  | 0    | 0    | 1759  | 0    |
| Link Speed (mph)              |             | 25   |              |      | 25       |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |             | 502  |              |      | 419      |            |      | 405   |      |      | 515   |      |
| Travel Time (s)               |             | 13.7 |              |      | 11.4     |            |      | 11.0  |      |      | 14.0  |      |
| Confl. Peds. (#/hr)           |             |      |              | 14   |          | 14         | 45   |       |      |      |       | 45   |
| Confl. Bikes (#/hr)           |             |      |              |      |          | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.92        | 0.92 | 0.92         | 0.65 | 0.65     | 0.65       | 0.91 | 0.91  | 0.91 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)            | 2%          | 2%   | 2%           | 2%   | 3%       | 3%         | 5%   | 3%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 0           | 0    | 0            | 40   | 143      | 118        | 40   | 448   | 0    | 0    | 140   | 28   |
| Shared Lane Traffic (%)       |             |      |              |      |          |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0           | 0    | 0            | 0    | 301      | 0          | 0    | 488   | 0    | 0    | 168   | 0    |
| Sign Control                  |             | Stop |              |      | Stop     |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |             |      |              |      |          |            |      |       |      |      |       |      |
| Area Type:                    | Other       |      |              |      |          |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |             |      |              |      |          |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | ition 58.1% |      |              | IC   | CU Level | of Service | B    |       |      |      |       |      |
| Analysis Period (min) 15      |             |      |              |      |          |            |      |       |      |      |       |      |

### Intersection Intersection Delay, s/veh Intersection LOS 15.5 C

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | 4    |      |      | र्भ  |      |      | ef 👘 |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 26   | 93   | 77   | 36   | 408  | 0    | 0    | 129  | 26   |
| Future Vol, veh/h          | 0    | 0    | 0    | 26   | 93   | 77   | 36   | 408  | 0    | 0    | 129  | 26   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.65 | 0.65 | 0.65 | 0.91 | 0.91 | 0.91 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 3    | 3    | 5    | 3    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 0    | 0    | 0    | 40   | 143  | 118  | 40   | 448  | 0    | 0    | 140  | 28   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      | NB   |      |      |      | SB   |      |
| Opposing Approach          |      |      |      |      |      |      | SB   |      |      |      | NB   |      |
| Opposing Lanes             |      |      |      | 0    |      |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Left  |      |      |      | NB   |      |      |      |      |      |      | WB   |      |
| Conflicting Lanes Left     |      |      |      | 1    |      |      | 0    |      |      |      | 1    |      |
| Conflicting Approach Right |      |      |      | SB   |      |      | WB   |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      | 1    |      |      |      | 0    |      |
| HCM Control Delay          |      |      |      | 12.9 |      |      | 19   |      |      |      | 10.3 |      |
| HCM LOS                    |      |      |      | В    |      |      | С    |      |      |      | В    |      |

| Lane                   | NBLn1 | WBLn1 | SBLn1 |
|------------------------|-------|-------|-------|
| Vol Left, %            | 8%    | 13%   | 0%    |
| -                      |       |       |       |
| Vol Thru, %            | 92%   | 47%   | 83%   |
| Vol Right, %           | 0%    | 39%   | 17%   |
| Sign Control           | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 444   | 196   | 155   |
| LT Vol                 | 36    | 26    | 0     |
| Through Vol            | 408   | 93    | 129   |
| RT Vol                 | 0     | 77    | 26    |
| Lane Flow Rate         | 488   | 302   | 168   |
| Geometry Grp           | 1     | 1     | 1     |
| Degree of Util (X)     | 0.695 | 0.454 | 0.253 |
| Departure Headway (Hd) | 5.129 | 5.418 | 5.404 |
| Convergence, Y/N       | Yes   | Yes   | Yes   |
| Сар                    | 707   | 663   | 664   |
| Service Time           | 3.157 | 3.454 | 3.441 |
| HCM Lane V/C Ratio     | 0.69  | 0.456 | 0.253 |
| HCM Control Delay      | 19    | 12.9  | 10.3  |
|                        |       |       |       |
| HCM Lane LOS           | C     | В     | В     |
| HCM 95th-tile Q        | 5.6   | 2.4   | 1     |

# New Haven Two-Way Study 26: York Street & George Street

|                         | ٨     | _        | >    |       | +       | A.   | •    | ŧ     | *       | 6     | T        |      |
|-------------------------|-------|----------|------|-------|---------|------|------|-------|---------|-------|----------|------|
|                         | -     |          |      |       | MOT     | -    | 1    | I     | /       |       |          | -    |
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT     | WBR  | NBL  | NBT   | NBR     | SBL   | SBT      | SBR  |
| Lane Configurations     | 170   | <b>4</b> | 24   | 50    | <b></b> | F.0  | 0    | 1     | 110     | 24    | <b>4</b> | 0    |
| Traffic Volume (vph)    | 170   | 330      | 26   | 52    | 0       | 52   | 0    | 258   | 119     | 26    | 103      | 0    |
| Future Volume (vph)     | 170   | 330      | 26   | 52    | 0       | 52   | 0    | 258   | 119     | 26    | 103      | 0    |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900 | 1900  | 1900    | 1900 | 1900 | 1900  | 1900    | 1900  | 1900     | 1900 |
| Storage Length (ft)     | 0     |          | 0    | 0     |         | 0    | 0    |       | 100     | 0     |          | 0    |
| Storage Lanes           | 1     |          | 0    | 0     |         | 0    | 0    |       | 1       | 0     |          | 0    |
| Taper Length (ft)       | 0     | 1 00     | 1 00 | 0     | 1.00    | 1.00 | 0    | 1 00  | 1 00    | 0     | 1 00     | 1.00 |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00    | 1.00 | 1.00 | 1.00  | 1.00    | 1.00  | 1.00     | 1.00 |
| Ped Bike Factor         | 0.94  | 0.99     |      |       | 0.93    |      |      |       | 0.86    |       | 0.99     |      |
| Frt                     | 0.050 | 0.989    |      |       | 0.932   |      |      |       | 0.850   |       | 0.000    |      |
| Flt Protected           | 0.950 | 4700     | •    | 0     | 0.976   | 0    | •    | 4700  | 4 4 0 7 | 0     | 0.990    | 0    |
| Satd. Flow (prot)       | 1646  | 1738     | 0    | 0     | 1551    | 0    | 0    | 1783  | 1487    | 0     | 1783     | 0    |
| Flt Permitted           | 0.684 | 4700     | •    | 0     | 0.761   | 0    | •    | 4700  | 1004    | 0     | 0.890    | 0    |
| Satd. Flow (perm)       | 1113  | 1738     | 0    | 0     | 1191    | 0    | 0    | 1783  | 1284    | 0     | 1580     | 0    |
| Right Turn on Red       |       |          | No   |       |         | No   |      |       | No      |       |          | No   |
| Satd. Flow (RTOR)       |       |          |      |       |         |      |      |       |         |       | 05       |      |
| Link Speed (mph)        |       | 25       |      |       | 25      |      |      | 25    |         |       | 25       |      |
| Link Distance (ft)      |       | 504      |      |       | 403     |      |      | 370   |         |       | 405      |      |
| Travel Time (s)         |       | 13.7     |      |       | 11.0    |      |      | 10.1  |         |       | 11.0     |      |
| Confl. Peds. (#/hr)     | 33    |          | 33   | 33    |         | 33   | 48   |       | 48      | 48    |          | 48   |
| Confl. Bikes (#/hr)     |       |          | 10   |       |         | 10   |      |       | 10      |       |          | 10   |
| Peak Hour Factor        | 0.90  | 0.90     | 0.90 | 0.92  | 0.92    | 0.92 | 0.96 | 0.96  | 0.96    | 0.92  | 0.92     | 0.92 |
| Heavy Vehicles (%)      | 6%    | 4%       | 0%   | 2%    | 2%      | 2%   | 2%   | 3%    | 5%      | 2%    | 2%       | 2%   |
| Adj. Flow (vph)         | 189   | 367      | 29   | 57    | 0       | 57   | 0    | 269   | 124     | 28    | 112      | 0    |
| Shared Lane Traffic (%) |       |          | -    |       |         |      | -    |       |         |       |          | _    |
| Lane Group Flow (vph)   | 189   | 396      | 0    | 0     | 114     | 0    | 0    | 269   | 124     | 0     | 140      | 0    |
| Turn Type               | Perm  | NA       |      | Perm  | NA      |      |      | NA    | Perm    | Perm  | NA       |      |
| Protected Phases        |       | 2        |      |       | 6       |      |      | 4     |         |       | 8        |      |
| Permitted Phases        | 2     |          |      | 6     |         |      |      |       | 4       | 8     | -        |      |
| Detector Phase          | 2     | 2        |      | 6     | 6       |      |      | 4     | 4       | 8     | 8        |      |
| Switch Phase            |       |          |      |       |         |      |      |       |         |       |          |      |
| Minimum Initial (s)     | 7.0   | 7.0      |      | 7.0   | 7.0     |      |      | 7.0   | 7.0     | 7.0   | 7.0      |      |
| Minimum Split (s)       | 17.0  | 17.0     |      | 17.0  | 17.0    |      |      | 17.0  | 17.0    | 17.0  | 17.0     |      |
| Total Split (s)         | 22.0  | 22.0     |      | 22.0  | 22.0    |      |      | 30.0  | 30.0    | 30.0  | 30.0     |      |
| Total Split (%)         | 36.7% | 36.7%    |      | 36.7% | 36.7%   |      |      | 50.0% | 50.0%   | 50.0% | 50.0%    |      |
| Yellow Time (s)         | 3.0   | 3.0      |      | 3.0   | 3.0     |      |      | 3.0   | 3.0     | 3.0   | 3.0      |      |
| All-Red Time (s)        | 1.0   | 1.0      |      | 1.0   | 1.0     |      |      | 1.0   | 1.0     | 1.0   | 1.0      |      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      |       | 0.0     |      |      | 0.0   | 0.0     |       | 0.0      |      |
| Total Lost Time (s)     | 4.0   | 4.0      |      |       | 4.0     |      |      | 4.0   | 4.0     |       | 4.0      |      |
| Lead/Lag                |       |          |      |       |         |      |      |       |         |       |          |      |
| Lead-Lag Optimize?      |       |          |      |       |         |      |      |       |         |       |          |      |
| Recall Mode             | C-Min | C-Min    |      | C-Min | C-Min   |      |      | None  | None    | None  | None     |      |
| Act Effct Green (s)     | 36.8  | 36.8     |      |       | 36.8    |      |      | 13.6  | 13.6    |       | 13.6     |      |
| Actuated g/C Ratio      | 0.61  | 0.61     |      |       | 0.61    |      |      | 0.23  | 0.23    |       | 0.23     |      |
| v/c Ratio               | 0.28  | 0.37     |      |       | 0.16    |      |      | 0.66  | 0.42    |       | 0.39     |      |
| Control Delay           | 9.2   | 9.2      |      |       | 4.5     |      |      | 28.6  | 23.1    |       | 21.6     |      |
| Queue Delay             | 0.0   | 0.0      |      |       | 0.0     |      |      | 0.0   | 0.0     |       | 0.0      |      |
| Total Delay             | 9.2   | 9.2      |      |       | 4.5     |      |      | 28.6  | 23.1    |       | 21.6     |      |
| LOS                     | А     | А        |      |       | А       |      |      | С     | С       |       | С        |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Fit Protected           |      |      |
|                         |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    | 0.0  | 0.0  |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | Nono | Nono |
|                         | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |

# New Haven Two-Way Study 26: York Street & George Street

|                              | ٦             | -         | $\mathbf{F}$ | •         | -          | •          | 1   | Ť    | 1    | 5   | ţ    | ~   |
|------------------------------|---------------|-----------|--------------|-----------|------------|------------|-----|------|------|-----|------|-----|
| Lane Group                   | EBL           | EBT       | EBR          | WBL       | WBT        | WBR        | NBL | NBT  | NBR  | SBL | SBT  | SBR |
| Approach Delay               |               | 9.2       |              |           | 4.5        |            |     | 26.9 |      |     | 21.6 |     |
| Approach LOS                 |               | А         |              |           | А          |            |     | С    |      |     | С    |     |
| Stops (vph)                  | 86            | 185       |              |           | 30         |            |     | 221  | 94   |     | 100  |     |
| Fuel Used(gal)               | 1             | 3         |              |           | 1          |            |     | 3    | 1    |     | 1    |     |
| CO Emissions (g/hr)          | 96            | 203       |              |           | 40         |            |     | 221  | 91   |     | 98   |     |
| NOx Emissions (g/hr)         | 19            | 39        |              |           | 8          |            |     | 43   | 18   |     | 19   |     |
| VOC Emissions (g/hr)         | 22            | 47        |              |           | 9          |            |     | 51   | 21   |     | 23   |     |
| Dilemma Vehicles (#)         | 0             | 0         |              |           | 0          |            |     | 0    | 0    |     | 0    |     |
| Queue Length 50th (ft)       | 25            | 56        |              |           | 7          |            |     | 89   | 39   |     | 43   |     |
| Queue Length 95th (ft)       | 95            | 180       |              |           | m26        |            |     | 137  | 71   |     | 76   |     |
| Internal Link Dist (ft)      |               | 424       |              |           | 323        |            |     | 290  |      |     | 325  |     |
| Turn Bay Length (ft)         |               |           |              |           |            |            |     |      | 100  |     |      |     |
| Base Capacity (vph)          | 681           | 1064      |              |           | 729        |            |     | 772  | 556  |     | 684  |     |
| Starvation Cap Reductn       | 0             | 0         |              |           | 0          |            |     | 0    | 0    |     | 0    |     |
| Spillback Cap Reductn        | 0             | 0         |              |           | 0          |            |     | 0    | 0    |     | 0    |     |
| Storage Cap Reductn          | 0             | 0         |              |           | 0          |            |     | 0    | 0    |     | 0    |     |
| Reduced v/c Ratio            | 0.28          | 0.37      |              |           | 0.16       |            |     | 0.35 | 0.22 |     | 0.20 |     |
| Intersection Summary         |               |           |              |           |            |            |     |      |      |     |      |     |
| Area Type:                   | Other         |           |              |           |            |            |     |      |      |     |      |     |
| Cycle Length: 60             |               |           |              |           |            |            |     |      |      |     |      |     |
| Actuated Cycle Length: 60    |               |           |              |           |            |            |     |      |      |     |      |     |
| Offset: 9 (15%), Reference   | ed to phase 2 | 2:EBTL ai | nd 6:WB      | TL, Start | of Yellow  |            |     |      |      |     |      |     |
| Natural Cycle: 45            |               |           |              |           |            |            |     |      |      |     |      |     |
| Control Type: Actuated-Co    | oordinated    |           |              |           |            |            |     |      |      |     |      |     |
| Maximum v/c Ratio: 0.66      |               |           |              |           |            |            |     |      |      |     |      |     |
| Intersection Signal Delay:   |               |           |              |           | tersection |            |     |      |      |     |      |     |
| Intersection Capacity Utiliz | zation 66.9%  |           |              | IC        | U Level    | of Service | e C |      |      |     |      |     |
| Analysis Period (min) 15     |               |           |              |           |            |            |     |      |      |     |      |     |
| m Volume for 95th perce      | entile queue  | s metere  | d by upst    | ream sig  | nal.       |            |     |      |      |     |      |     |
| Collite and Dhasast 24.1     | Vork Stract a | Coorco    | Ctroot       |           |            |            |     |      |      |     |      |     |
| Splits and Phases: 26:       | York Street & | George    | Sileel       | _         |            |            |     |      |      |     |      |     |

|    | 1<br>Ø9 | → <sub>Ø2 (R)</sub> | • | Mon | <b>↑</b> Ø4 |
|----|---------|---------------------|---|-----|-------------|
| 4: | s       | 22 s                |   | 4s  | 30 s        |
|    |         | ✓ Ø6 (R)            | • |     | ✓Ø8         |
|    |         | 22 s                |   |     | 30 s        |

|                              | <b>→</b>     | $\mathbf{r}$ | -    | -    | 1           | 1            |
|------------------------------|--------------|--------------|------|------|-------------|--------------|
| Lane Group                   | EBT          | EBR          | WBL  | WBT  | NBL         | NBR          |
| Lane Configurations          | •            |              |      | •    | Y           |              |
| Traffic Volume (vph)         | 129          | 0            | 0    | 387  | 0           | 57           |
| Future Volume (vph)          | 129          | 0            | 0    | 387  | 0           | 57           |
| Ideal Flow (vphpl)           | 1900         | 1900         | 1900 | 1900 | 1900        | 1900         |
| Lane Util. Factor            | 1.00         | 1.00         | 1.00 | 1.00 | 1.00        | 1.00         |
| Ped Bike Factor              |              |              |      |      |             |              |
| Frt                          |              |              |      |      | 0.865       |              |
| Flt Protected                |              |              |      |      |             |              |
| Satd. Flow (prot)            | 1801         | 0            | 0    | 1670 | 1558        | 0            |
| Flt Permitted                |              |              |      |      |             |              |
| Satd. Flow (perm)            | 1801         | 0            | 0    | 1670 | 1558        | 0            |
| Link Speed (mph)             | 25           |              |      | 25   | 25          |              |
| Link Distance (ft)           | 419          |              |      | 502  | 522         |              |
| Travel Time (s)              | 11.4         |              |      | 13.7 | 14.2        |              |
| Confl. Peds. (#/hr)          |              |              |      |      | 75          | 75           |
| Confl. Bikes (#/hr)          |              | 15           |      |      |             | 15           |
| Peak Hour Factor             | 0.92         | 0.92         | 0.88 | 0.88 | 0.91        | 0.91         |
| Heavy Vehicles (%)           | 2%           | 2%           | 2%   | 10%  | 3%          | 2%           |
| Adj. Flow (vph)              | 140          | 0            | 0    | 440  | 0           | 63           |
| Shared Lane Traffic (%)      |              |              |      |      |             |              |
| Lane Group Flow (vph)        | 140          | 0            | 0    | 440  | 63          | 0            |
| Sign Control                 | Stop         |              |      | Stop | Stop        |              |
| Intersection Summary         |              |              |      |      |             |              |
| Area Type:                   | Other        |              |      |      |             |              |
| Control Type: Unsignalized   |              |              |      |      |             |              |
| Intersection Capacity Utiliz | zation 40.0% |              |      | IC   | CU Level of | of Service A |
| Analysis Period (min) 15     |              |              |      |      |             |              |

Analysis Period (min) 15

| ntersection                                   |      |
|-----------------------------------------------|------|
| ntersection Delay, s/veh                      | 10.9 |
| Intersection Delay, s/veh<br>Intersection LOS | В    |

| Movement                   | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |  |
|----------------------------|------|------|------|------|------|------|--|
| Lane Configurations        | 1    |      |      | 1    | Y    |      |  |
| Traffic Vol, veh/h         | 129  | 0    | 0    | 387  | 0    | 57   |  |
| Future Vol, veh/h          | 129  | 0    | 0    | 387  | 0    | 57   |  |
| Peak Hour Factor           | 0.92 | 0.92 | 0.88 | 0.88 | 0.91 | 0.91 |  |
| Heavy Vehicles, %          | 2    | 2    | 2    | 10   | 3    | 2    |  |
| Mvmt Flow                  | 140  | 0    | 0    | 440  | 0    | 63   |  |
| Number of Lanes            | 1    | 0    | 0    | 1    | 1    | 0    |  |
| Approach                   | EB   |      |      | WB   | NB   |      |  |
| Opposing Approach          | WB   |      |      | EB   |      |      |  |
| Opposing Lanes             | 1    |      |      | 1    | 0    |      |  |
| Conflicting Approach Left  |      |      |      | NB   | EB   |      |  |
| Conflicting Lanes Left     | 0    |      |      | 1    | 1    |      |  |
| Conflicting Approach Right | NB   |      |      |      | WB   |      |  |
| Conflicting Lanes Right    | 1    |      |      | 0    | 1    |      |  |
| HCM Control Delay          | 8.5  |      |      | 12.1 | 8.1  |      |  |
| HCM LOS                    | А    |      |      | В    | А    |      |  |

| Lane                   | NBLn1 | EBLn1 | WBLn1 |
|------------------------|-------|-------|-------|
| Vol Left, %            | 0%    | 0%    | 0%    |
| Vol Thru, %            | 0%    | 100%  | 100%  |
| Vol Right, %           | 100%  | 0%    | 0%    |
| Sign Control           | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 57    | 129   | 387   |
| LT Vol                 | 0     | 0     | 0     |
| Through Vol            | 0     | 129   | 387   |
| RT Vol                 | 57    | 0     | 0     |
| Lane Flow Rate         | 63    | 140   | 440   |
| Geometry Grp           | 1     | 1     | 1     |
| Degree of Util (X)     | 0.081 | 0.177 | 0.524 |
| Departure Headway (Hd) | 4.641 | 4.535 | 4.288 |
| Convergence, Y/N       | Yes   | Yes   | Yes   |
| Сар                    | 775   | 794   | 827   |
| Service Time           | 2.651 | 2.548 | 2.384 |
| HCM Lane V/C Ratio     | 0.081 | 0.176 | 0.532 |
| HCM Control Delay      | 8.1   | 8.5   | 12.1  |
| HCM Lane LOS           | А     | А     | В     |
| HCM 95th-tile Q        | 0.3   | 0.6   | 3.1   |

# New Haven Two-Way Study

Future Volumes under 2-way ScenariotreetTiming Plan: MORNING PEAK HOUR

|                               | ٦          | -     | $\mathbf{r}$ | 4    | -          | *          | ٩.   | 1     | 1    | 1    | Ŧ     | ∢_   |
|-------------------------------|------------|-------|--------------|------|------------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT   | EBR          | WBL  | WBT        | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            | 4     |              |      | 4          |            |      | 4     |      |      | 4     |      |
| Traffic Volume (vph)          | 57         | 341   | 52           | 52   | 103        | 26         | 11   | 5     | 11   | 26   | 5     | 26   |
| Future Volume (vph)           | 57         | 341   | 52           | 52   | 103        | 26         | 11   | 5     | 11   | 26   | 5     | 26   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900 | 1900       | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 1.00 | 1.00       | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |       |              |      |            |            |      |       |      |      |       |      |
| Frt                           |            | 0.984 |              |      | 0.980      |            |      | 0.944 |      |      | 0.939 |      |
| Flt Protected                 |            | 0.994 |              |      | 0.987      |            |      | 0.980 |      |      | 0.978 |      |
| Satd. Flow (prot)             | 0          | 1733  | 0            | 0    | 1742       | 0          | 0    | 1666  | 0    | 0    | 1657  | 0    |
| Flt Permitted                 |            | 0.994 |              |      | 0.987      |            |      | 0.980 |      |      | 0.978 |      |
| Satd. Flow (perm)             | 0          | 1733  | 0            | 0    | 1742       | 0          | 0    | 1666  | 0    | 0    | 1657  | 0    |
| Link Speed (mph)              |            | 25    |              |      | 25         |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 403   |              |      | 487        |            |      | 120   |      |      | 398   |      |
| Travel Time (s)               |            | 11.0  |              |      | 13.3       |            |      | 3.3   |      |      | 10.9  |      |
| Confl. Peds. (#/hr)           | 25         |       | 28           | 28   |            | 25         | 5    |       | 5    | 5    |       | 5    |
| Confl. Bikes (#/hr)           |            |       | 10           |      |            | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.71       | 0.71  | 0.71         | 0.95 | 0.88       | 0.88       | 0.95 | 0.95  | 0.95 | 0.52 | 0.52  | 0.52 |
| Heavy Vehicles (%)            | 5%         | 4%    | 0%           | 2%   | 2%         | 2%         | 2%   | 2%    | 2%   | 2%   | 0%    | 2%   |
| Adj. Flow (vph)               | 80         | 480   | 73           | 55   | 117        | 30         | 12   | 5     | 12   | 50   | 10    | 50   |
| Shared Lane Traffic (%)       |            |       | -            | _    |            | -          | _    |       | -    |      |       |      |
| Lane Group Flow (vph)         | 0          | 633   | 0            | 0    | 202        | 0          | 0    | 29    | 0    | 0    | 110   | 0    |
| Sign Control                  |            | Free  |              |      | Free       |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |       |              |      |            |            |      |       |      |      |       |      |
| Area Type: (                  | Other      |       |              |      |            |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |       |              |      |            |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 39.8% | )     |              | IC   | CU Level o | of Service | A    |       |      |      |       |      |
| Analysis Period (min) 15      |            |       |              |      |            |            |      |       |      |      |       |      |

#### Intersection

Int Delay, s/veh

4.4

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h     | 57   | 341  | 52   | 52   | 103  | 26   | 11   | 5    | 11   | 26   | 5    | 26   |
| Future Vol, veh/h      | 57   | 341  | 52   | 52   | 103  | 26   | 11   | 5    | 11   | 26   | 5    | 26   |
| Conflicting Peds, #/hr | 25   | 0    | 28   | 28   | 0    | 25   | 5    | 0    | 5    | 5    | 0    | 5    |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized         | -    | -    | None |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Veh in Median Storage  | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 71   | 71   | 71   | 95   | 88   | 88   | 95   | 95   | 95   | 52   | 52   | 52   |
| Heavy Vehicles, %      | 5    | 4    | 0    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 0    | 2    |
| Mvmt Flow              | 80   | 480  | 73   | 55   | 117  | 30   | 12   | 5    | 12   | 50   | 10   | 50   |

| Major/Minor          | Major1 |   | Ν | /lajor2 |   |   | Minor1 |       | [     | Minor2 |      |       |  |
|----------------------|--------|---|---|---------|---|---|--------|-------|-------|--------|------|-------|--|
| Conflicting Flow All | 172    | 0 | 0 | 581     | 0 | 0 | 982    | 987   | 550   | 957    | 1008 | 162   |  |
| Stage 1              | -      | - | - | -       | - | - | 705    | 705   | -     | 267    | 267  | -     |  |
| Stage 2              | -      | - | - | -       | - | - | 277    | 282   | -     | 690    | 741  | -     |  |
| Critical Hdwy        | 4.15   | - | - | 4.12    | - | - | 7.12   | 6.52  | 6.22  | 7.12   | 6.5  | 6.22  |  |
| Critical Hdwy Stg 1  | -      | - | - | -       | - | - | 6.12   | 5.52  | -     | 6.12   | 5.5  | -     |  |
| Critical Hdwy Stg 2  | -      | - | - | -       | - | - | 6.12   | 5.52  | -     | 6.12   | 5.5  | -     |  |
| Follow-up Hdwy       | 2.245  | - | - | 2.218   | - | - | 3.518  | 4.018 | 3.318 | 3.518  | 4    | 3.318 |  |
| Pot Cap-1 Maneuver   | 1387   | - | - | 993     | - | - | 228    | 247   | 535   | 237    | 242  | 883   |  |
| Stage 1              | -      | - | - | -       | - | - | 427    | 439   | -     | 738    | 692  | -     |  |
| Stage 2              | -      | - | - | -       | - | - | 729    | 678   | -     | 435    | 426  | -     |  |
| Platoon blocked, %   |        | - | - |         | - | - |        |       |       |        |      |       |  |
| Mov Cap-1 Maneuver   | 1361   | - | - | 972     | - | - | 180    | 203   | 522   | 198    | 199  | 863   |  |
| Mov Cap-2 Maneuver   | -      | - | - | -       | - | - | 180    | 203   | -     | 198    | 199  | -     |  |
| Stage 1              | -      | - | - | -       | - | - | 382    | 393   | -     | 662    | 637  | -     |  |
| Stage 2              | -      | - | - | -       | - | - | 632    | 624   | -     | 382    | 381  | -     |  |
|                      |        |   |   |         |   |   |        |       |       |        |      |       |  |
| Approach             | EB     |   |   | WB      |   |   | NB     |       |       | SB     |      |       |  |
| HCM Control Delay, s | 1      |   |   | 2.4     |   |   | 21     |       |       | 23.2   |      |       |  |
| HCM LOS              |        |   |   |         |   |   | С      |       |       | С      |      |       |  |
|                      |        |   |   |         |   |   |        |       |       |        |      |       |  |

| Minor Lane/Major Mvmt | NBLn1 | EBL   | EBT | EBR | WBL   | WBT | WBR 3 | SBLn1 |
|-----------------------|-------|-------|-----|-----|-------|-----|-------|-------|
| Capacity (veh/h)      | 253   | 1361  | -   | -   | 972   | -   | -     | 306   |
| HCM Lane V/C Ratio    | 0.112 | 0.059 | -   | -   | 0.056 | -   | -     | 0.358 |
| HCM Control Delay (s) | 21    | 7.8   | 0   | -   | 8.9   | 0   | -     | 23.2  |
| HCM Lane LOS          | С     | Α     | А   | -   | А     | А   | -     | С     |
| HCM 95th %tile Q(veh) | 0.4   | 0.2   | -   | -   | 0.2   | -   | -     | 1.6   |

### New Haven Two-Way Study 71: York Street & North Frontage Road

|                         | ۶    | <b>→</b> | $\mathbf{F}$ | 4      | +            | •    | 1     | t         | *    | 1    | ţ         | ~    |
|-------------------------|------|----------|--------------|--------|--------------|------|-------|-----------|------|------|-----------|------|
| Lane Group              | EBL  | EBT      | EBR          | WBL    | WBT          | WBR  | NBL   | NBT       | NBR  | SBL  | SBT       | SBR  |
| Lane Configurations     |      |          |              |        | 4 <b>†</b> ₽ |      |       | र्स       |      |      | 4Î        |      |
| Traffic Volume (vph)    | 0    | 0        | 0            | 129    | 800          | 181  | 57    | 217       | 0    | 0    | 155       | 26   |
| Future Volume (vph)     | 0    | 0        | 0            | 129    | 800          | 181  | 57    | 217       | 0    | 0    | 155       | 26   |
| Ideal Flow (vphpl)      | 1900 | 1900     | 1900         | 1900   | 1900         | 1900 | 1900  | 1900      | 1900 | 1900 | 1900      | 1900 |
| Lane Util. Factor       | 1.00 | 1.00     | 1.00         | 0.91   | 0.91         | 0.91 | 1.00  | 1.00      | 1.00 | 1.00 | 1.00      | 1.00 |
| Ped Bike Factor         | 1100 |          |              | 0171   | 0.99         | 0171 |       |           |      |      | 1.00      |      |
| Frt                     |      |          |              |        | 0.976        |      |       |           |      |      | 0.981     |      |
| Flt Protected           |      |          |              |        | 0.994        |      |       | 0.990     |      |      | 0.701     |      |
| Satd. Flow (prot)       | 0    | 0        | 0            | 0      | 4669         | 0    | 0     | 1752      | 0    | 0    | 1760      | 0    |
| Flt Permitted           | Ű    | Ű        | Ű            | Ŭ      | 0.994        | Ŭ    | Ŭ     | 0.871     | Ŭ    | Ŭ    | 1700      | Ű    |
| Satd. Flow (perm)       | 0    | 0        | 0            | 0      | 4669         | 0    | 0     | 1541      | 0    | 0    | 1760      | 0    |
| Right Turn on Red       | Ű    | Ŭ        | No           | Ű      | 1007         | No   | Ŭ     | 1011      | No   | Ű    | 1700      | No   |
| Satd. Flow (RTOR)       |      |          | NO           |        |              |      |       |           | 110  |      |           | 110  |
| Link Speed (mph)        |      | 25       |              |        | 25           |      |       | 25        |      |      | 25        |      |
| Link Distance (ft)      |      | 495      |              |        | 928          |      |       | 252       |      |      | 370       |      |
| Travel Time (s)         |      | 13.5     |              |        | 25.3         |      |       | 6.9       |      |      | 10.1      |      |
| Confl. Bikes (#/hr)     |      | 10.0     | 10           |        | 20.0         | 10   |       | 0.7       | 10   |      | 10.1      | 10   |
| Peak Hour Factor        | 0.92 | 0.92     | 0.92         | 0.83   | 0.83         | 0.83 | 0.79  | 0.79      | 0.79 | 0.92 | 0.92      | 0.92 |
| Heavy Vehicles (%)      | 2%   | 2%       | 2%           | 2%     | 4%           | 3%   | 3%    | 4%        | 2%   | 2%   | 2%        | 2%   |
| Adj. Flow (vph)         | 0    | 270      | 270          | 155    | 964          | 218  | 72    | 275       | 270  | 270  | 168       | 28   |
| Shared Lane Traffic (%) | 0    | 0        | U            | 100    | 704          | 210  | 12    | 215       | 0    | 0    | 100       | 20   |
| Lane Group Flow (vph)   | 0    | 0        | 0            | 0      | 1337         | 0    | 0     | 347       | 0    | 0    | 196       | 0    |
| Turn Type               | 0    | 0        | 0            | Perm   | NA           | 0    | D.P+P | NA        | 0    | 0    | NA        | 0    |
| Protected Phases        |      |          |              | T CITI | 6            |      | 7     | 7 8       |      |      | 8         |      |
| Permitted Phases        |      |          |              | 6      | 0            |      | 8     | 70        |      |      | 0         |      |
| Detector Phase          |      |          |              | 6      | 6            |      | 78    | 78        |      |      | 8         |      |
| Switch Phase            |      |          |              | 0      | 0            |      | 70    | 70        |      |      | 0         |      |
| Minimum Initial (s)     |      |          |              | 12.0   | 12.0         |      | 7.0   |           |      |      | 12.0      |      |
| Minimum Split (s)       |      |          |              | 18.0   | 18.0         |      | 10.0  |           |      |      | 16.0      |      |
| Total Split (s)         |      |          |              | 30.0   | 30.0         |      | 16.0  |           |      |      | 20.0      |      |
| Total Split (%)         |      |          |              | 33.3%  | 33.3%        |      | 17.8% |           |      |      | 22.2%     |      |
| Yellow Time (s)         |      |          |              | 4.0    | 4.0          |      | 3.0   |           |      |      | 3.0       |      |
| All-Red Time (s)        |      |          |              | 2.0    | 2.0          |      | 0.0   |           |      |      | 1.0       |      |
| Lost Time Adjust (s)    |      |          |              | 2.0    | 0.0          |      | 0.0   |           |      |      | 0.0       |      |
| Total Lost Time (s)     |      |          |              |        | 6.0          |      |       |           |      |      | 4.0       |      |
| Lead/Lag                |      |          |              |        | 0.0          |      | Lead  |           |      |      | Lag       |      |
| Lead-Lag Optimize?      |      |          |              |        |              |      | Yes   |           |      |      | Lug       |      |
| Recall Mode             |      |          |              | C-Max  | C-Max        |      | None  |           |      |      | None      |      |
| Act Effct Green (s)     |      |          |              | O Max  | 31.3         |      | NONC  | 27.5      |      |      | 13.5      |      |
| Actuated g/C Ratio      |      |          |              |        | 0.35         |      |       | 0.31      |      |      | 0.15      |      |
| v/c Ratio               |      |          |              |        | 0.82         |      |       | 0.69      |      |      | 0.74      |      |
| Control Delay           |      |          |              |        | 35.3         |      |       | 33.1      |      |      | 53.8      |      |
| Queue Delay             |      |          |              |        | 0.0          |      |       | 0.3       |      |      | 0.0       |      |
| Total Delay             |      |          |              |        | 35.3         |      |       | 33.4      |      |      | 53.8      |      |
| LOS                     |      |          |              |        | 55.5<br>D    |      |       | 55.4<br>C |      |      | 55.8<br>D |      |
| Approach Delay          |      |          |              |        | 35.3         |      |       | 33.4      |      |      | 53.8      |      |
| Approach LOS            |      |          |              |        | 30.3<br>D    |      |       | зз.4<br>С |      |      | 03.0<br>D |      |
| Stops (vph)             |      |          |              |        | 880          |      |       | 238       |      |      | 168       |      |
| Fuel Used(gal)          |      |          |              |        | 20           |      |       | 238       |      |      | 3         |      |
|                         |      |          |              |        | 20           |      |       | 3         |      |      | ა         |      |

Lanes, Volumes, Timings SLR

| Lane Group                    | Ø3   |
|-------------------------------|------|
| Lane Configurations           |      |
| Traffic Volume (vph)          |      |
| Future Volume (vph)           |      |
| Ideal Flow (vphpl)            |      |
| Lane Util. Factor             |      |
| Ped Bike Factor               |      |
| Frt                           |      |
| Fit Protected                 |      |
|                               |      |
| Satd. Flow (prot)             |      |
| Fit Permitted                 |      |
| Satd. Flow (perm)             |      |
| Right Turn on Red             |      |
| Satd. Flow (RTOR)             |      |
| Link Speed (mph)              |      |
| Link Distance (ft)            |      |
| Travel Time (s)               |      |
| Confl. Bikes (#/hr)           |      |
| Peak Hour Factor              |      |
| Heavy Vehicles (%)            |      |
| Adj. Flow (vph)               |      |
| Shared Lane Traffic (%)       |      |
| Lane Group Flow (vph)         |      |
| Turn Type                     |      |
| Protected Phases              | 3    |
| Permitted Phases              |      |
| Detector Phase                |      |
| Switch Phase                  |      |
| Minimum Initial (s)           | 1.0  |
| Minimum Split (s)             | 24.0 |
| Total Split (s)               | 24.0 |
| Total Split (%)               | 27%  |
| Yellow Time (s)               | 4.0  |
| All-Red Time (s)              | 0.0  |
| Lost Time Adjust (s)          | 0.0  |
| Total Lost Time (s)           |      |
| Lead/Lag                      |      |
|                               |      |
| Lead-Lag Optimize?            | Nono |
| Recall Mode                   | None |
| Act Effct Green (s)           |      |
| Actuated g/C Ratio            |      |
| v/c Ratio                     |      |
| Control Delay                 |      |
| Queue Delay                   |      |
| Total Delay                   |      |
| LOS                           |      |
| Approach Delay                |      |
| Approach LOS                  |      |
|                               |      |
| Stops (vph)<br>Fuel Used(gal) |      |

New Haven Two-Way Study 71: York Street & North Frontage Road

|                                | ≯           | -          | $\mathbf{F}$ | 4          | ←          | •          | 1   | Ť    | ۲   | 5   | ţ    | ~   |
|--------------------------------|-------------|------------|--------------|------------|------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                     | EBL         | EBT        | EBR          | WBL        | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| CO Emissions (g/hr)            |             |            |              |            | 1406       |            |     | 234  |     |     | 222  |     |
| NOx Emissions (g/hr)           |             |            |              |            | 274        |            |     | 46   |     |     | 43   |     |
| VOC Emissions (g/hr)           |             |            |              |            | 326        |            |     | 54   |     |     | 52   |     |
| Dilemma Vehicles (#)           |             |            |              |            | 0          |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)         |             |            |              |            | 270        |            |     | 163  |     |     | 109  |     |
| Queue Length 95th (ft)         |             |            |              |            | #351       |            |     | 200  |     |     | 176  |     |
| Internal Link Dist (ft)        |             | 415        |              |            | 848        |            |     | 172  |     |     | 290  |     |
| Turn Bay Length (ft)           |             |            |              |            |            |            |     |      |     |     |      |     |
| Base Capacity (vph)            |             |            |              |            | 1621       |            |     | 544  |     |     | 312  |     |
| Starvation Cap Reductn         |             |            |              |            | 0          |            |     | 22   |     |     | 0    |     |
| Spillback Cap Reductn          |             |            |              |            | 0          |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn            |             |            |              |            | 0          |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio              |             |            |              |            | 0.82       |            |     | 0.66 |     |     | 0.63 |     |
| Intersection Summary           |             |            |              |            |            |            |     |      |     |     |      |     |
| Area Type: C                   | Other       |            |              |            |            |            |     |      |     |     |      |     |
| Cycle Length: 90               |             |            |              |            |            |            |     |      |     |     |      |     |
| Actuated Cycle Length: 90      |             |            |              |            |            |            |     |      |     |     |      |     |
| Offset: 16 (18%), Reference    | d to phase  | 6:WBTL     | Start of     | Yellow     |            |            |     |      |     |     |      |     |
| Natural Cycle: 80              |             |            |              |            |            |            |     |      |     |     |      |     |
| Control Type: Actuated-Coor    | dinated     |            |              |            |            |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.82        |             |            |              |            |            |            |     |      |     |     |      |     |
| Intersection Signal Delay: 36  |             |            |              |            | tersection |            |     |      |     |     |      |     |
| Intersection Capacity Utilizat | ion 58.4%   |            |              | IC         | CU Level   | of Service | вB  |      |     |     |      |     |
| Analysis Period (min) 15       |             |            |              |            |            |            |     |      |     |     |      |     |
| # 95th percentile volume e     |             |            | leue may     | i be longe | er.        |            |     |      |     |     |      |     |
| Queue shown is maximu          | m after two | o cycles.  |              |            |            |            |     |      |     |     |      |     |
| Splits and Phases: 71: Yo      | rk Street 8 | , North Fr | ontane E     | Poad       |            |            |     |      |     |     |      |     |
| opino ana masos. 71.10         |             |            | ontage r     | louu       |            |            |     |      |     |     |      |     |

| ₹Ø6 (R) | ₩ø3  | <b>↑</b> <sub>Ø7</sub> | <b>\$</b> ↑ <sub>Ø8</sub> |  |
|---------|------|------------------------|---------------------------|--|
| 30 s    | 24 s | 16 s                   | 20 s                      |  |

# New Haven Two-Way Study 74: College Street & George Street

| y                       |      |           |                    |       |           |      |      |      | -    |         |           |      |
|-------------------------|------|-----------|--------------------|-------|-----------|------|------|------|------|---------|-----------|------|
|                         | ٦    | -         | $\mathbf{\hat{z}}$ | 4     | +         | •    | 1    | Ť    | 1    | 1       | Ŧ         | ~    |
| Lane Group              | EBL  | EBT       | EBR                | WBL   | WBT       | WBR  | NBL  | NBT  | NBR  | SBL     | SBT       | SBR  |
| Lane Configurations     |      | 4         |                    |       | र्भ       |      |      |      |      |         | 4         |      |
| Traffic Volume (vph)    | 0    | 258       | 108                | 52    | 155       | 0    | 0    | 0    | 0    | 52      | 248       | 26   |
| Future Volume (vph)     | 0    | 258       | 108                | 52    | 155       | 0    | 0    | 0    | 0    | 52      | 248       | 26   |
| Ideal Flow (vphpl)      | 1900 | 1900      | 1900               | 1900  | 1900      | 1900 | 1900 | 1900 | 1900 | 1900    | 1900      | 1900 |
| Lane Util. Factor       | 1.00 | 1.00      | 1.00               | 1.00  | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00    | 1.00      | 1.00 |
| Ped Bike Factor         | 1100 | 0.97      |                    |       | 0.99      |      |      |      |      |         | 0.97      |      |
| Frt                     |      | 0.960     |                    |       | 0.77      |      |      |      |      |         | 0.989     |      |
| Flt Protected           |      |           |                    |       | 0.987     |      |      |      |      |         | 0.992     |      |
| Satd. Flow (prot)       | 0    | 1435      | 0                  | 0     | 1600      | 0    | 0    | 0    | 0    | 0       | 1475      | 0    |
| Flt Permitted           | -    |           | -                  | -     | 0.847     | -    | -    | -    |      | -       | 0.992     |      |
| Satd. Flow (perm)       | 0    | 1435      | 0                  | 0     | 1360      | 0    | 0    | 0    | 0    | 0       | 1445      | 0    |
| Right Turn on Red       |      |           | No                 |       |           | No   | Ŭ    | Ŭ    | No   | Ű       | 1110      | No   |
| Satd. Flow (RTOR)       |      |           |                    |       |           |      |      |      |      |         |           |      |
| Link Speed (mph)        |      | 25        |                    |       | 25        |      |      | 25   |      |         | 25        |      |
| Link Distance (ft)      |      | 487       |                    |       | 542       |      |      | 382  |      |         | 372       |      |
| Travel Time (s)         |      | 13.3      |                    |       | 14.8      |      |      | 10.4 |      |         | 10.1      |      |
| Confl. Peds. (#/hr)     | 60   | 10.0      | 60                 | 60    | 11.0      | 60   | 60   | 10.1 | 60   | 60      | 10.1      | 60   |
| Confl. Bikes (#/hr)     | 00   |           | 10                 | 00    |           | 10   | 00   |      | 00   | 00      |           | 10   |
| Peak Hour Factor        | 0.91 | 0.91      | 0.91               | 0.92  | 0.92      | 0.92 | 0.92 | 0.92 | 0.92 | 0.83    | 0.83      | 0.83 |
| Heavy Vehicles (%)      | 2%   | 7%        | 9%                 | 2%    | 2%        | 2%   | 2%   | 2%   | 2%   | 5%      | 10%       | 2%   |
| Adj. Flow (vph)         | 0    | 284       | 119                | 57    | 168       | 0    | 0    | 0    | 0    | 63      | 299       | 31   |
| Shared Lane Traffic (%) | U    | 201       | 117                | 07    | 100       | Ū    | U    | Ū    | U    | 00      | 277       | 01   |
| Lane Group Flow (vph)   | 0    | 403       | 0                  | 0     | 225       | 0    | 0    | 0    | 0    | 0       | 393       | 0    |
| Turn Type               | U    | NA        | 0                  | Perm  | NA        | Ū    | U    | Ū    | U    | Perm    | NA        | Ű    |
| Protected Phases        |      | 2         |                    | 1 Onn | 6         |      |      |      |      | 1 OIIII | 4         |      |
| Permitted Phases        |      | -         |                    | 6     | Ű         |      |      |      |      | 4       |           |      |
| Detector Phase          |      | 2         |                    | 6     | 6         |      |      |      |      | 4       | 4         |      |
| Switch Phase            |      | -         |                    | Ū     | Ű         |      |      |      |      |         |           |      |
| Minimum Initial (s)     |      | 7.0       |                    | 7.0   | 7.0       |      |      |      |      | 7.0     | 7.0       |      |
| Minimum Split (s)       |      | 18.0      |                    | 18.0  | 18.0      |      |      |      |      | 18.0    | 18.0      |      |
| Total Split (s)         |      | 30.0      |                    | 30.0  | 30.0      |      |      |      |      | 22.0    | 22.0      |      |
| Total Split (%)         |      | 50.0%     |                    | 50.0% | 50.0%     |      |      |      |      | 36.7%   | 36.7%     |      |
| Yellow Time (s)         |      | 3.0       |                    | 3.0   | 3.0       |      |      |      |      | 3.0     | 3.0       |      |
| All-Red Time (s)        |      | 1.0       |                    | 1.0   | 1.0       |      |      |      |      | 1.0     | 1.0       |      |
| Lost Time Adjust (s)    |      | 0.0       |                    | 1.0   | 0.0       |      |      |      |      | 1.0     | 0.0       |      |
| Total Lost Time (s)     |      | 4.0       |                    |       | 4.0       |      |      |      |      |         | 4.0       |      |
| Lead/Lag                |      | 1.0       |                    |       | 1.0       |      |      |      |      |         | 1.0       |      |
| Lead-Lag Optimize?      |      |           |                    |       |           |      |      |      |      |         |           |      |
| Recall Mode             |      | C-Min     |                    | C-Min | C-Min     |      |      |      |      | None    | None      |      |
| Act Effct Green (s)     |      | 29.5      |                    |       | 29.5      |      |      |      |      | None    | 17.7      |      |
| Actuated g/C Ratio      |      | 0.49      |                    |       | 0.49      |      |      |      |      |         | 0.30      |      |
| v/c Ratio               |      | 0.57      |                    |       | 0.34      |      |      |      |      |         | 0.92      |      |
| Control Delay           |      | 15.8      |                    |       | 13.9      |      |      |      |      |         | 52.1      |      |
| Queue Delay             |      | 0.0       |                    |       | 0.0       |      |      |      |      |         | 0.0       |      |
| Total Delay             |      | 15.8      |                    |       | 13.9      |      |      |      |      |         | 52.1      |      |
| LOS                     |      | 15.0<br>B |                    |       | 13.9<br>B |      |      |      |      |         | 52.1<br>D |      |
| Approach Delay          |      | 15.8      |                    |       | 13.9      |      |      |      |      |         | 52.1      |      |
| Approach LOS            |      | 15.8<br>B |                    |       | 13.9<br>B |      |      |      |      |         | 52.1<br>D |      |
| Stops (vph)             |      | 259       |                    |       | 137       |      |      |      |      |         | 268       |      |
| Stops (vpi)             |      | 207       |                    |       | 137       |      |      |      |      |         | 200       |      |

Lanes, Volumes, Timings SLR

| Lane Group                         | Ø9        | Ø10       |
|------------------------------------|-----------|-----------|
| Lane Configurations                |           |           |
| Traffic Volume (vph)               |           |           |
| Future Volume (vph)                |           |           |
| Ideal Flow (vphpl)                 |           |           |
| Lane Util. Factor                  |           |           |
| Ped Bike Factor                    |           |           |
| Fred bike Factor                   |           |           |
| Fit Protected                      |           |           |
|                                    |           |           |
| Satd. Flow (prot)<br>Flt Permitted |           |           |
|                                    |           |           |
| Satd. Flow (perm)                  |           |           |
| Right Turn on Red                  |           |           |
| Satd. Flow (RTOR)                  |           |           |
| Link Speed (mph)                   |           |           |
| Link Distance (ft)                 |           |           |
| Travel Time (s)                    |           |           |
| Confl. Peds. (#/hr)                |           |           |
| Confl. Bikes (#/hr)                |           |           |
| Peak Hour Factor                   |           |           |
| Heavy Vehicles (%)                 |           |           |
| Adj. Flow (vph)                    |           |           |
| Shared Lane Traffic (%)            |           |           |
| Lane Group Flow (vph)              |           |           |
| Turn Type                          |           |           |
| Protected Phases                   | 9         | 10        |
| Permitted Phases                   |           | -         |
| Detector Phase                     |           |           |
| Switch Phase                       |           |           |
| Minimum Initial (s)                | 2.0       | 2.0       |
| Minimum Split (s)                  | 4.0       | 4.0       |
| Total Split (s)                    | 4.0       | 4.0       |
| Total Split (%)                    | 4.0<br>7% | 4.0<br>7% |
| Yellow Time (s)                    | 2.0       | 2.0       |
|                                    | 0.0       |           |
| All-Red Time (s)                   | 0.0       | 0.0       |
| Lost Time Adjust (s)               |           |           |
| Total Lost Time (s)                |           |           |
| Lead/Lag                           |           |           |
| Lead-Lag Optimize?                 | K I       | N         |
| Recall Mode                        | None      | None      |
| Act Effct Green (s)                |           |           |
| Actuated g/C Ratio                 |           |           |
| v/c Ratio                          |           |           |
| Control Delay                      |           |           |
| Queue Delay                        |           |           |
| Total Delay                        |           |           |
| LOS                                |           |           |
| Approach Delay                     |           |           |
| Approach LOS                       |           |           |
| Stops (vph)                        |           |           |
|                                    |           |           |

# New Haven Two-Way Study 74: College Street & George Street

|                                | _ *              | • •          | 4          | ←           | •          | 1   | Ť   | 1   | 1   | ţ    | ~   |
|--------------------------------|------------------|--------------|------------|-------------|------------|-----|-----|-----|-----|------|-----|
| Lane Group                     | EBL EI           | BT EBR       | WBL        | WBT         | WBR        | NBL | NBT | NBR | SBL | SBT  | SBF |
| Fuel Used(gal)                 |                  | 4            |            | 2           |            |     |     |     |     | 6    |     |
| CO Emissions (g/hr)            | 2                | 58           |            | 145         |            |     |     |     |     | 386  |     |
| NOx Emissions (g/hr)           |                  | 50           |            | 28          |            |     |     |     |     | 75   |     |
| VOC Emissions (g/hr)           |                  | 60           |            | 34          |            |     |     |     |     | 89   |     |
| Dilemma Vehicles (#)           |                  | 0            |            | 0           |            |     |     |     |     | 0    |     |
| Queue Length 50th (ft)         | 1                | )5           |            | 35          |            |     |     |     |     | 135  |     |
| Queue Length 95th (ft)         | 2                | 17           |            | 125         |            |     |     |     |     | #249 |     |
| Internal Link Dist (ft)        | 4                | )7           |            | 462         |            |     | 302 |     |     | 292  |     |
| Turn Bay Length (ft)           |                  |              |            |             |            |     |     |     |     |      |     |
| Base Capacity (vph)            | 7                | )5           |            | 668         |            |     |     |     |     | 433  |     |
| Starvation Cap Reductn         |                  | 0            |            | 0           |            |     |     |     |     | 0    |     |
| Spillback Cap Reductn          |                  | 0            |            | 0           |            |     |     |     |     | 0    |     |
| Storage Cap Reductn            |                  | 0            |            | 0           |            |     |     |     |     | 0    |     |
| Reduced v/c Ratio              | 0.               | 57           |            | 0.34        |            |     |     |     |     | 0.91 |     |
| Intersection Summary           |                  |              |            |             |            |     |     |     |     |      |     |
| Area Type: C                   | BD               |              |            |             |            |     |     |     |     |      |     |
| Cycle Length: 60               |                  |              |            |             |            |     |     |     |     |      |     |
| Actuated Cycle Length: 60      |                  |              |            |             |            |     |     |     |     |      |     |
| Offset: 45 (75%), Referenced   | d to phase 2:EE  | ST and 6:WE  | STL, Start | of Yellow   |            |     |     |     |     |      |     |
| Natural Cycle: 60              |                  |              |            |             |            |     |     |     |     |      |     |
| Control Type: Actuated-Coor    | dinated          |              |            |             |            |     |     |     |     |      |     |
| Maximum v/c Ratio: 0.92        |                  |              |            |             |            |     |     |     |     |      |     |
| Intersection Signal Delay: 29  |                  |              | Ir         | itersection | n LOS: C   |     |     |     |     |      |     |
| Intersection Capacity Utilizat | ion 72.5%        |              | IC         | CU Level    | of Service | еC  |     |     |     |      |     |
| Analysis Period (min) 15       |                  |              |            |             |            |     |     |     |     |      |     |
| # 95th percentile volume e     |                  |              | y be longe | er.         |            |     |     |     |     |      |     |
| Queue shown is maximur         | n after two cyc  | es.          |            |             |            |     |     |     |     |      |     |
|                                |                  |              |            |             |            |     |     |     |     |      |     |
| Splits and Phases: 74: Co      | llege Street & ( | George Stree | et         |             |            |     |     |     |     |      |     |

|   | ₩ <sub>Ø9</sub> | →ø2 (R)          | ≹≹ø1 | Ø Ø4 |  |
|---|-----------------|------------------|------|------|--|
| 4 | s               | 30 s             | 4s   | 22 s |  |
|   |                 | ✓ Ø6 (R)<br>30 s |      |      |  |

# New Haven Two-Way Study 78: Temple Street & George Street

| l                       | •     | <u> </u> |              |       |       |      |       |       | -    |       |       | ,    |
|-------------------------|-------|----------|--------------|-------|-------|------|-------|-------|------|-------|-------|------|
|                         | ٦     | -        | $\mathbf{F}$ | 1     | -     | •    | 1     | Ť     | 1    | >     | Ŧ     | -    |
| Lane Group              | EBL   | EBT      | EBR          | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | 4        |              | ሻ     | eî.   |      | ٦     | ef 👘  |      | ٦     | eî 👘  |      |
| Traffic Volume (vph)    | 52    | 241      | 57           | 52    | 103   | 26   | 26    | 129   | 62   | 103   | 83    | 26   |
| Future Volume (vph)     | 52    | 241      | 57           | 52    | 103   | 26   | 26    | 129   | 62   | 103   | 83    | 26   |
| Ideal Flow (vphpl)      | 1900  | 1900     | 1900         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 0     |          | 0            | 150   |       | 0    | 75    |       | 0    | 75    |       | 0    |
| Storage Lanes           | 0     |          | 0            | 1     |       | 0    | 1     |       | 0    | 1     |       | 1    |
| Taper Length (ft)       | 0     |          |              | 25    |       |      | 25    |       |      | 25    |       |      |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00         | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.98     |              | 0.98  | 0.98  |      | 0.95  | 0.97  |      | 0.96  | 0.98  |      |
| Frt                     |       | 0.978    |              |       | 0.970 |      |       | 0.951 |      |       | 0.964 |      |
| Flt Protected           |       | 0.993    |              | 0.950 |       |      | 0.950 |       |      | 0.950 |       |      |
| Satd. Flow (prot)       | 0     | 1488     | 0            | 1540  | 1546  | 0    | 1540  | 1499  | 0    | 1342  | 1424  | 0    |
| Flt Permitted           |       | 0.942    |              | 0.489 |       |      | 0.669 |       |      | 0.545 |       |      |
| Satd. Flow (perm)       | 0     | 1402     | 0            | 776   | 1546  | 0    | 1034  | 1499  | 0    | 739   | 1424  | 0    |
| Right Turn on Red       |       |          | No           |       |       | No   |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |          |              |       |       |      |       |       |      |       |       |      |
| Link Speed (mph)        |       | 25       |              |       | 25    |      |       | 25    |      |       | 25    |      |
| Link Distance (ft)      |       | 542      |              |       | 404   |      |       | 250   |      |       | 403   |      |
| Travel Time (s)         |       | 14.8     |              |       | 11.0  |      |       | 6.8   |      |       | 11.0  |      |
| Confl. Peds. (#/hr)     | 26    |          | 26           | 26    |       | 26   | 26    |       | 26   | 26    |       | 26   |
| Confl. Bikes (#/hr)     |       |          | 10           |       |       | 10   |       |       | 10   |       |       | 10   |
| Peak Hour Factor        | 0.81  | 0.81     | 0.81         | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 | 0.80  | 0.80  | 0.80 |
| Heavy Vehicles (%)      | 2%    | 7%       | 8%           | 2%    | 2%    | 2%   | 2%    | 2%    | 2%   | 17%   | 12%   | 2%   |
| Adj. Flow (vph)         | 64    | 298      | 70           | 57    | 112   | 28   | 28    | 140   | 67   | 129   | 104   | 33   |
| Shared Lane Traffic (%) |       |          |              |       |       |      |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 432      | 0            | 57    | 140   | 0    | 28    | 207   | 0    | 129   | 137   | 0    |
| Turn Type               | Perm  | NA       |              | Perm  | NA    |      | Perm  | NA    |      | Perm  | NA    |      |
| Protected Phases        |       | 2        |              |       | 6     |      |       | 4     |      |       | 8     |      |
| Permitted Phases        | 2     |          |              | 6     |       |      | 4     |       |      | 8     |       |      |
| Detector Phase          | 2     | 2        |              | 6     | 6     |      | 4     | 4     |      | 8     | 8     |      |
| Switch Phase            |       |          |              |       |       |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0      |              | 7.0   | 7.0   |      | 7.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 18.0  | 18.0     |              | 18.0  | 18.0  |      | 18.0  | 18.0  |      | 18.0  | 18.0  |      |
| Total Split (s)         | 28.0  | 28.0     |              | 28.0  | 28.0  |      | 24.0  | 24.0  |      | 24.0  | 24.0  |      |
| Total Split (%)         | 46.7% | 46.7%    |              | 46.7% | 46.7% |      | 40.0% | 40.0% |      | 40.0% | 40.0% |      |
| Yellow Time (s)         | 3.0   | 3.0      |              | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0      |              | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0      |              | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |
| Total Lost Time (s)     |       | 4.0      |              | 4.0   | 4.0   |      | 4.0   | 4.0   |      | 4.0   | 4.0   |      |
| Lead/Lag                |       |          |              |       |       |      |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       |          |              |       |       |      |       |       |      |       |       |      |
| Recall Mode             | C-Min | C-Min    |              | C-Min | C-Min |      | None  | None  |      | None  | None  |      |
| Act Effct Green (s)     |       | 34.3     |              | 34.3  | 34.3  |      | 14.5  | 14.5  |      | 14.5  | 14.5  |      |
| Actuated g/C Ratio      |       | 0.57     |              | 0.57  | 0.57  |      | 0.24  | 0.24  |      | 0.24  | 0.24  |      |
| v/c Ratio               |       | 0.54     |              | 0.13  | 0.16  |      | 0.11  | 0.57  |      | 0.72  | 0.40  |      |
| Control Delay           |       | 10.1     |              | 10.6  | 9.6   |      | 16.3  | 25.5  |      | 42.9  | 21.2  |      |
| Queue Delay             |       | 0.0      |              | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |
| Total Delay             |       | 10.1     |              | 10.6  | 9.6   |      | 16.3  | 25.5  |      | 42.9  | 21.2  |      |
| LOS                     |       | В        |              | В     | A     |      | В     | С     |      | D     | С     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10   |
|-------------------------|------|-------|
| Lane Configurations     |      |       |
| Traffic Volume (vph)    |      |       |
| Future Volume (vph)     |      |       |
| Ideal Flow (vphpl)      |      |       |
| Storage Length (ft)     |      |       |
| Storage Lanes           |      |       |
| Taper Length (ft)       |      |       |
| Lane Util. Factor       |      |       |
| Ped Bike Factor         |      |       |
| Frt                     |      |       |
| Fit Protected           |      |       |
|                         |      |       |
| Satd. Flow (prot)       |      |       |
| Flt Permitted           |      |       |
| Satd. Flow (perm)       |      |       |
| Right Turn on Red       |      |       |
| Satd. Flow (RTOR)       |      |       |
| Link Speed (mph)        |      |       |
| Link Distance (ft)      |      |       |
| Travel Time (s)         |      |       |
| Confl. Peds. (#/hr)     |      |       |
| Confl. Bikes (#/hr)     |      |       |
| Peak Hour Factor        |      |       |
| Heavy Vehicles (%)      |      |       |
| Adj. Flow (vph)         |      |       |
| Shared Lane Traffic (%) |      |       |
| Lane Group Flow (vph)   |      |       |
| Turn Type               |      |       |
| Protected Phases        | 9    | 10    |
| Permitted Phases        |      |       |
| Detector Phase          |      |       |
| Switch Phase            |      |       |
| Minimum Initial (s)     | 2.0  | 2.0   |
| Minimum Split (s)       | 4.0  | 4.0   |
| Total Split (s)         | 4.0  | 4.0   |
| Total Split (%)         | 7%   | 7%    |
| Yellow Time (s)         | 2.0  | 2.0   |
| All-Red Time (s)        | 0.0  | 0.0   |
| Lost Time Adjust (s)    | 0.0  | 0.0   |
|                         |      |       |
| Total Lost Time (s)     |      |       |
| Lead/Lag                |      |       |
| Lead-Lag Optimize?      | NL   | Nerre |
| Recall Mode             | None | None  |
| Act Effct Green (s)     |      |       |
| Actuated g/C Ratio      |      |       |
| v/c Ratio               |      |       |
| Control Delay           |      |       |
| Queue Delay             |      |       |
| Total Delay             |      |       |
| LOS                     |      |       |
|                         |      |       |

# New Haven Two-Way Study 78: Temple Street & George Street

|                                | ۶          | -         | $\mathbf{r}$ | ∢           | ←          | •          | 1    | Ť    | 1   | 1    | ţ    | ~   |
|--------------------------------|------------|-----------|--------------|-------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                     | EBL        | EBT       | EBR          | WBL         | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                 |            | 10.1      |              |             | 9.8        |            |      | 24.4 |     |      | 31.7 |     |
| Approach LOS                   |            | В         |              |             | А          |            |      | С    |     |      | С    |     |
| Stops (vph)                    |            | 174       |              | 30          | 66         |            | 21   | 155  |     | 92   | 84   |     |
| Fuel Used(gal)                 |            | 3         |              | 0           | 1          |            | 0    | 2    |     | 2    | 1    |     |
| CO Emissions (g/hr)            |            | 210       |              | 28          | 66         |            | 18   | 156  |     | 112  | 82   |     |
| NOx Emissions (g/hr)           |            | 41        |              | 6           | 13         |            | 3    | 30   |     | 22   | 16   |     |
| VOC Emissions (g/hr)           |            | 49        |              | 7           | 15         |            | 4    | 36   |     | 26   | 19   |     |
| Dilemma Vehicles (#)           |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)         |            | 31        |              | 7           | 18         |            | 8    | 66   |     | 43   | 41   |     |
| Queue Length 95th (ft)         |            | m111      |              | 35          | 66         |            | 22   | 108  |     | 74   | 65   |     |
| Internal Link Dist (ft)        |            | 462       |              |             | 324        |            |      | 170  |     |      | 323  |     |
| Turn Bay Length (ft)           |            |           |              | 150         |            |            | 75   |      |     | 75   |      |     |
| Base Capacity (vph)            |            | 802       |              | 444         | 884        |            | 344  | 499  |     | 246  | 474  |     |
| Starvation Cap Reductn         |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn          |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn            |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio              |            | 0.54      |              | 0.13        | 0.16       |            | 0.08 | 0.41 |     | 0.52 | 0.29 |     |
| Intersection Summary           |            |           |              |             |            |            |      |      |     |      |      |     |
| Jr.                            | CBD        |           |              |             |            |            |      |      |     |      |      |     |
| Cycle Length: 60               |            |           |              |             |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60      |            |           |              |             |            |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t   | o phase 2: | EBTL and  | d 6:WBT      | L, Start of | f Yellow   |            |      |      |     |      |      |     |
| Natural Cycle: 55              |            |           |              |             |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Cool    | rdinated   |           |              |             |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.72        |            |           |              |             |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 18  | 3.1        |           |              | In          | tersectior | ו LOS: B   |      |      |     |      |      |     |
| Intersection Capacity Utilizat | ion 65.4%  |           |              | IC          | U Level    | of Service | еC   |      |     |      |      |     |
| Analysis Period (min) 15       |            |           |              |             |            |            |      |      |     |      |      |     |
| m Volume for 95th percent      | ile queue  | is metere | d by upst    | ream sig    | nal.       |            |      |      |     |      |      |     |
| Splits and Phases: 78: Te      | mple Stree | et & Geor | ge Street    | İ           |            |            |      |      |     |      |      |     |
| 1 an (n)                       |            |           | v            |             |            |            | <†   |      |     |      |      |     |

| ₩ø9 | ø₂ (R)      | ≹∎ø1 | <b>1</b> 04 |
|-----|-------------|------|-------------|
| 4s  | 28 s        | 4s   | 24 s        |
|     | €<br>Ø6 (R) |      | ₩Ø8         |
|     | 28 s        |      | 24 s        |

### New Haven Two-Way Study 80: Church Street & Crown Street

|                         | ≯     | +     | *        | 4        | t          | •        | •           | t         | *        | 1    | Ļ     | ~        |
|-------------------------|-------|-------|----------|----------|------------|----------|-------------|-----------|----------|------|-------|----------|
| Lane Group              | EBL   | EBT   | EBR      | WBL      | WBT        | WBR      | NBL         | NBT       | NBR      | SBL  | SBT   | SBR      |
| Lane Configurations     |       | \$    |          | <u>۲</u> | el<br>el   |          | ۲           | •         |          |      | ¢Î    |          |
| Traffic Volume (vph)    | 26    | 0     | 26       | 55       | 160        | 62       | 124         | 511       | 0        | 0    | 155   | 52       |
| Future Volume (vph)     | 26    | 0     | 26       | 55       | 160        | 62       | 124         | 511       | 0        | 0    | 155   | 52       |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900     | 1900     | 1900       | 1900     | 1900        | 1900      | 1900     | 1900 | 1900  | 1900     |
| Storage Length (ft)     | 0     |       | 0        | 50       | .,         | 0        | 75          |           | 0        | 0    | .,    | 0        |
| Storage Lanes           | 0     |       | 0        | 1        |            | 0        | 1           |           | 0        | 0    |       | 0        |
| Taper Length (ft)       | 0     |       | Ū        | 15       |            |          | 15          |           |          | 0    |       | Ū        |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00     | 1.00     | 1.00       | 1.00     | 1.00        | 1.00      | 1.00     | 1.00 | 1.00  | 1.00     |
| Ped Bike Factor         |       | 0.90  |          | 0.89     | 0.96       |          |             |           |          |      | 0.96  |          |
| Frt                     |       | 0.932 |          | 0.07     | 0.958      |          |             |           |          |      | 0.966 |          |
| Flt Protected           |       | 0.976 |          | 0.950    | 0.700      |          | 0.950       |           |          |      | 0.700 |          |
| Satd. Flow (prot)       | 0     | 1363  | 0        | 1540     | 1171       | 0        | 1510        | 1301      | 0        | 0    | 1505  | 0        |
| Flt Permitted           | U     | 0.501 | 0        | 0.768    | 11/1       | U        | 0.950       | 1301      | U        | U    | 1000  | U        |
| Satd. Flow (perm)       | 0     | 678   | 0        | 1108     | 1171       | 0        | 1510        | 1301      | 0        | 0    | 1505  | 0        |
| Right Turn on Red       | 0     | 070   | No       | 1100     | 11/1       | No       | 1510        | 1301      | No       | 0    | 1505  | No       |
| Satd. Flow (RTOR)       |       |       | NO       |          |            | NO       |             |           | NO       |      |       | NO       |
| Link Speed (mph)        |       | 25    |          |          | 25         |          |             | 25        |          |      | 25    |          |
| Link Distance (ft)      |       | 412   |          |          | 510        |          |             | 415       |          |      | 522   |          |
| Travel Time (s)         |       | 11.2  |          |          | 13.9       |          |             | 11.3      |          |      | 14.2  |          |
| Confl. Peds. (#/hr)     | 35    | 11.2  | 35       | 35       | 13.9       | 35       |             | 11.5      | 35       |      | 14.2  | 35       |
| Confl. Bikes (#/hr)     | 30    |       | 35<br>10 | 30       |            | 35<br>10 |             |           | 30<br>10 |      |       | 30<br>10 |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92     | 0.80     | 0.80       | 0.80     | 0.88        | 0.88      | 0.88     | 0.92 | 0.92  | 0.92     |
|                         | 2%    | 2%    | 2%       | 2%       | 0.80<br>4% | 26%      | 0.88<br>4%  | 0.88      | 2%       | 2%   | 2%    | 2%       |
| Heavy Vehicles (%)      | Ζ70   | Ζ%    | Ζ70      | Ζ70      | 4%         | 20%      | 4 %         |           | Ζ70      | Ζ70  | Z70   | Ζ%       |
| Parking (#/hr)          | 20    | 0     | 20       | (0       |            | 70       | 1 / 1       | 10<br>501 | 0        | 0    | 1/0   | F7       |
| Adj. Flow (vph)         | 28    | 0     | 28       | 69       | 200        | 78       | 141         | 581       | 0        | 0    | 168   | 57       |
| Shared Lane Traffic (%) | 0     | ٢/    | 0        | (0       | 270        | 0        | 1 / 1       | F01       | 0        | 0    | 225   | 0        |
| Lane Group Flow (vph)   | 0     | 56    | 0        | 69       | 278        | 0        | 141<br>Dret | 581       | 0        | 0    | 225   | 0        |
| Turn Type               | Perm  | NA    |          | pm+pt    | NA         |          | Prot        | NA        |          |      | NA    |          |
| Protected Phases        | 1     | 6     |          | 5        | 2          |          | 7           | 4         |          |      | 8     |          |
| Permitted Phases        | 6     | ,     |          | 2        | 2          |          | 7           | 4         |          |      | 0     |          |
| Detector Phase          | 6     | 6     |          | 5        | 2          |          | 7           | 4         |          |      | 8     |          |
| Switch Phase            | 7.0   | 7.0   |          | 2.0      | 7.0        |          | 2.0         | 7.0       |          |      | 7.0   |          |
| Minimum Initial (s)     | 7.0   | 7.0   |          | 3.0      | 7.0        |          | 3.0         | 7.0       |          |      | 7.0   |          |
| Minimum Split (s)       | 17.0  | 17.0  |          | 7.0      | 17.0       |          | 7.0         | 17.0      |          |      | 17.0  |          |
| Total Split (s)         | 29.0  | 29.0  |          | 10.0     | 39.0       |          | 13.0        | 40.0      |          |      | 27.0  |          |
| Total Split (%)         | 32.2% | 32.2% |          | 11.1%    | 43.3%      |          | 14.4%       | 44.4%     |          |      | 30.0% |          |
| Yellow Time (s)         | 3.0   | 3.0   |          | 3.0      | 3.0        |          | 3.0         | 3.0       |          |      | 3.0   | _        |
| All-Red Time (s)        | 1.0   | 1.0   |          | 1.0      | 1.0        |          | 1.0         | 1.0       |          |      | 1.0   |          |
| Lost Time Adjust (s)    |       | 0.0   |          | 0.0      | 0.0        |          | 0.0         | 0.0       |          |      | 0.0   |          |
| Total Lost Time (s)     |       | 4.0   |          | 4.0      | 4.0        |          | 4.0         | 4.0       |          |      | 4.0   |          |
| Lead/Lag                | Lead  | Lead  |          | Lag      |            |          | Lag         |           |          |      | Lead  |          |
| Lead-Lag Optimize?      |       |       |          |          |            |          |             | 0.14      |          |      | 0.14  |          |
| Recall Mode             | None  | None  |          | None     | None       |          | None        | C-Min     |          |      | C-Min |          |
| Act Effct Green (s)     |       | 13.1  |          | 26.4     | 26.4       |          | 16.0        | 50.3      |          |      | 30.3  |          |
| Actuated g/C Ratio      |       | 0.15  |          | 0.29     | 0.29       |          | 0.18        | 0.56      |          |      | 0.34  |          |
| v/c Ratio               |       | 0.57  |          | 0.18     | 0.81       |          | 0.52        | 0.80      |          |      | 0.44  |          |
| Control Delay           |       | 59.8  |          | 22.5     | 46.8       |          | 39.0        | 23.9      |          |      | 32.0  |          |
| Queue Delay             |       | 0.4   |          | 0.0      | 0.7        |          | 0.0         | 0.7       |          |      | 0.0   |          |
| Total Delay             |       | 60.2  |          | 22.5     | 47.4       |          | 39.0        | 24.6      |          |      | 32.0  |          |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9    | Ø10   |
|-------------------------|-------|-------|
| Lane Configurations     |       |       |
| Traffic Volume (vph)    |       |       |
| Future Volume (vph)     |       |       |
| Ideal Flow (vphpl)      |       |       |
| Storage Length (ft)     |       |       |
| Storage Lanes           |       |       |
| Taper Length (ft)       |       |       |
| Lane Util. Factor       |       |       |
| Ped Bike Factor         |       |       |
| Frt                     |       |       |
| Flt Protected           |       |       |
| Satd. Flow (prot)       |       |       |
| Flt Permitted           |       |       |
| Satd. Flow (perm)       |       |       |
|                         |       |       |
| Right Turn on Red       |       |       |
| Satd. Flow (RTOR)       |       |       |
| Link Speed (mph)        |       |       |
| Link Distance (ft)      |       |       |
| Travel Time (s)         |       |       |
| Confl. Peds. (#/hr)     |       |       |
| Confl. Bikes (#/hr)     |       |       |
| Peak Hour Factor        |       |       |
| Heavy Vehicles (%)      |       |       |
| Parking (#/hr)          |       |       |
| Adj. Flow (vph)         |       |       |
| Shared Lane Traffic (%) |       |       |
| Lane Group Flow (vph)   |       |       |
| Turn Type               |       |       |
| Protected Phases        | 9     | 10    |
| Permitted Phases        |       |       |
| Detector Phase          |       |       |
| Switch Phase            |       |       |
| Minimum Initial (s)     | 2.0   | 2.0   |
| Minimum Split (s)       | 7.0   | 4.0   |
| Total Split (s)         | 7.0   | 4.0   |
| Total Split (%)         | 8%    | 4%    |
| Yellow Time (s)         | 2.0   | 2.0   |
| All-Red Time (s)        | 0.0   | 0.0   |
| Lost Time Adjust (s)    | 510   | 0.0   |
| Total Lost Time (s)     |       |       |
| Lead/Lag                |       |       |
| Lead-Lag Optimize?      |       |       |
| Recall Mode             | None  | None  |
| Act Effct Green (s)     | NULLE | NULLE |
| .,                      |       |       |
| Actuated g/C Ratio      |       |       |
| v/c Ratio               |       |       |
| Control Delay           |       |       |
| Queue Delay             |       |       |
| Total Delay             |       |       |

### New Haven Two-Way Study 80: Church Street & Crown Street

|                                   | ≯ →               | $\mathbf{i}$ | 4          | ←          | •         | 1     | Ť            | ۲   | 1   | ţ    | ~   |
|-----------------------------------|-------------------|--------------|------------|------------|-----------|-------|--------------|-----|-----|------|-----|
| Lane Group                        | EBL EBT           | EBR          | WBL        | WBT        | WBR       | NBL   | NBT          | NBR | SBL | SBT  | SBR |
| LOS                               | E                 |              | С          | D          |           | D     | С            |     |     | С    |     |
| Approach Delay                    | 60.3              |              |            | 42.5       |           |       | 27.4         |     |     | 32.0 |     |
| Approach LOS                      | E                 |              |            | D          |           |       | С            |     |     | С    |     |
| Stops (vph)                       | 50                |              | 37         | 199        |           | 99    | 369          |     |     | 154  |     |
| Fuel Used(gal)                    | 1                 |              | 1          | 4          |           | 2     | 6            |     |     | 3    |     |
| CO Emissions (g/hr)               | 70                |              | 44         | 269        |           | 126   | 399          |     |     | 200  |     |
| NOx Emissions (g/hr)              | 14                |              | 9          | 52         |           | 25    | 78           |     |     | 39   |     |
| VOC Emissions (g/hr)              | 16                |              | 10         | 62         |           | 29    | 92           |     |     | 46   |     |
| Dilemma Vehicles (#)              | 0                 |              | 0          | 0          |           | 0     | 0            |     |     | 0    |     |
| Queue Length 50th (ft)            | 30                |              | 29         | 145        |           | 80    | 286          |     |     | 100  |     |
| Queue Length 95th (ft)            | #78               |              | 46         | 178        |           | m#152 | #52 <b>9</b> |     |     | m164 |     |
| Internal Link Dist (ft)           | 332               |              |            | 430        |           |       | 335          |     |     | 442  |     |
| Turn Bay Length (ft)              |                   |              | 50         |            |           | 75    |              |     |     |      |     |
| Base Capacity (vph)               | 188               |              | 380        | 455        |           | 269   | 727          |     |     | 506  |     |
| Starvation Cap Reductn            | 0                 |              | 0          | 0          |           | 0     | 27           |     |     | 0    |     |
| Spillback Cap Reductn             | 21                |              | 0          | 37         |           | 0     | 9            |     |     | 0    |     |
| Storage Cap Reductn               | 0                 |              | 0          | 0          |           | 0     | 0            |     |     | 0    |     |
| Reduced v/c Ratio                 | 0.34              |              | 0.18       | 0.67       |           | 0.52  | 0.83         |     |     | 0.44 |     |
| Intersection Summary              |                   |              |            |            |           |       |              |     |     |      |     |
|                                   | BD                |              |            |            |           |       |              |     |     |      |     |
| Cycle Length: 90                  |                   |              |            |            |           |       |              |     |     |      |     |
| Actuated Cycle Length: 90         |                   |              |            |            |           |       |              |     |     |      |     |
| Offset: 64 (71%), Referenced      | to phase 4:NBT    | and 8:SB1    | , Start of | Yellow     |           |       |              |     |     |      |     |
| Natural Cycle: 90                 |                   |              |            |            |           |       |              |     |     |      |     |
| Control Type: Actuated-Coord      | dinated           |              |            |            |           |       |              |     |     |      |     |
| Maximum v/c Ratio: 0.81           |                   |              |            |            |           |       |              |     |     |      |     |
| Intersection Signal Delay: 33.    |                   |              |            | tersectior |           |       |              |     |     |      |     |
| Intersection Capacity Utilization | on 63.6%          |              | IC         | CU Level   | of Servic | e B   |              |     |     |      |     |
| Analysis Period (min) 15          |                   |              |            |            |           |       |              |     |     |      |     |
| # 95th percentile volume ex       |                   |              | / be longe | er.        |           |       |              |     |     |      |     |
| Queue shown is maximum            |                   |              |            |            |           |       |              |     |     |      |     |
| m Volume for 95th percentil       | le queue is meter | ed by ups    | tream sigi | nal.       |           |       |              |     |     |      |     |

### Splits and Phases: 80: Church Street & Crown Street

| ₩ø9 | <b>₩</b> Ø2            |             | ₱10 Ø4 (R) | Ţ             |
|-----|------------------------|-------------|------------|---------------|
| 7 s | 39 s                   |             | 4 s 40 s   |               |
|     | <b>⊥</b> <sub>∞6</sub> | <b>√</b> Ø5 | Ø8 (R)     | • <b>1</b> 07 |
|     | 29 s                   | 10 s        | 27 s       | 13 s          |

# New Haven Two-Way Study 81: Church Street & George Street

|                         | ≯        | +     | *    | 4     | +     | •    | •     | †     | 1    | 1     | ţ     | ~    |
|-------------------------|----------|-------|------|-------|-------|------|-------|-------|------|-------|-------|------|
| Lane Group              | EBL      | EBT   | EBR  | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     | ሻ        | 4Î    |      | ሻ     | eî 🗧  |      | ۲     | 4     |      | ۲     | ¢Î,   |      |
| Traffic Volume (vph)    | 211      | 50    | 76   | 57    | 52    | 83   | 78    | 341   | 62   | 52    | 155   | 52   |
| Future Volume (vph)     | 211      | 50    | 76   | 57    | 52    | 83   | 78    | 341   | 62   | 52    | 155   | 52   |
| Ideal Flow (vphpl)      | 1900     | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 150      |       | 0    | 150   |       | 0    | 0     |       | 0    | 75    |       | 0    |
| Storage Lanes           | 1        |       | 0    | 1     |       | 0    | 1     |       | 0    | 1     |       | 0    |
| Taper Length (ft)       | 25       |       |      | 25    |       |      | 0     |       |      | 15    |       |      |
| Lane Util. Factor       | 1.00     | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         | 0.96     | 0.96  |      | 0.97  | 0.94  |      | 0.95  | 0.98  |      | 0.96  | 0.97  |      |
| Frt                     |          | 0.910 |      |       | 0.908 |      |       | 0.977 |      |       | 0.962 |      |
| Flt Protected           | 0.950    |       |      | 0.950 |       |      | 0.950 |       |      | 0.950 |       |      |
| Satd. Flow (prot)       | 1441     | 1205  | 0    | 1525  | 1346  | 0    | 1540  | 1501  | 0    | 1540  | 1518  | 0    |
| Flt Permitted           | 0.480    |       |      | 0.565 |       |      | 0.950 |       |      | 0.950 |       |      |
| Satd. Flow (perm)       | 695      | 1205  | 0    | 878   | 1346  | 0    | 1462  | 1501  | 0    | 1483  | 1518  | 0    |
| Right Turn on Red       |          |       | No   |       |       | No   |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |          |       |      |       |       |      |       |       |      |       |       |      |
| Link Speed (mph)        |          | 25    |      |       | 25    |      |       | 25    |      |       | 25    |      |
| Link Distance (ft)      |          | 404   |      |       | 524   |      |       | 453   |      |       | 415   |      |
| Travel Time (s)         |          | 11.0  |      |       | 14.3  |      |       | 12.4  |      |       | 11.3  |      |
| Confl. Peds. (#/hr)     | 20       |       | 20   | 20    |       | 20   | 20    |       | 20   | 20    |       | 20   |
| Confl. Bikes (#/hr)     |          |       | 10   |       |       | 10   |       |       | 10   |       |       | 10   |
| Peak Hour Factor        | 0.85     | 0.85  | 0.85 | 0.72  | 0.72  | 0.72 | 0.88  | 0.88  | 0.88 | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 9%       | 12%   | 26%  | 3%    | 2%    | 6%   | 2%    | 5%    | 11%  | 2%    | 2%    | 2%   |
| Adj. Flow (vph)         | 248      | 59    | 89   | 79    | 72    | 115  | 89    | 388   | 70   | 57    | 168   | 57   |
| Shared Lane Traffic (%) |          |       |      |       |       |      |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 248      | 148   | 0    | 79    | 187   | 0    | 89    | 458   | 0    | 57    | 225   | 0    |
| Turn Type               | pm+pt    | NA    |      | pm+pt | NA    |      | Prot  | NA    |      | Prot  | NA    |      |
| Protected Phases        | 1        | 6     |      | 5     | 2     |      | 7     | 4     |      | 3     | 8     |      |
| Permitted Phases        | 6        |       |      | 2     |       |      |       |       |      |       |       |      |
| Detector Phase          | 1        | 6     |      | 5     | 2     |      | 7     | 4     |      | 3     | 8     |      |
| Switch Phase            |          |       |      |       |       |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 3.0      | 7.0   |      | 3.0   | 7.0   |      | 3.0   | 7.0   |      | 3.0   | 7.0   |      |
| Minimum Split (s)       | 7.0      | 17.0  |      | 7.0   | 17.0  |      | 7.0   | 17.0  |      | 7.0   | 17.0  |      |
| Total Split (s)         | 18.0     | 35.0  |      | 7.0   | 24.0  |      | 14.0  | 24.0  |      | 13.0  | 23.0  |      |
| Total Split (%)         | 20.0%    | 38.9% |      | 7.8%  | 26.7% |      | 15.6% | 26.7% |      | 14.4% | 25.6% |      |
| Yellow Time (s)         | 3.0      | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0      | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    | 0.0      | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |
| Total Lost Time (s)     | 4.0      | 4.0   |      | 4.0   | 4.0   |      | 4.0   | 4.0   |      | 4.0   | 4.0   |      |
| Lead/Lag                | Lag      | Lead  |      | Lag   | Lead  |      | Lag   | Lead  |      | Lag   | Lead  |      |
| Lead-Lag Optimize?      | <b>.</b> |       |      | 0     |       |      | 5     |       |      | 0     |       |      |
| Recall Mode             | None     | None  |      | None  | None  |      | None  | C-Min |      | None  | C-Min |      |
| Act Effct Green (s)     | 27.4     | 18.1  |      | 26.3  | 16.5  |      | 9.2   | 39.2  |      | 6.2   | 36.3  |      |
| Actuated g/C Ratio      | 0.30     | 0.20  |      | 0.29  | 0.18  |      | 0.10  | 0.44  |      | 0.07  | 0.40  |      |
| v/c Ratio               | 0.85     | 0.61  |      | 0.24  | 0.76  |      | 0.57  | 0.70  |      | 0.54  | 0.37  |      |
| Control Delay           | 54.1     | 43.8  |      | 21.2  | 53.7  |      | 52.5  | 34.9  |      | 54.7  | 15.9  |      |
| Queue Delay             | 0.0      | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 3.5   |      | 0.0   | 0.0   |      |
| Total Delay             | 54.1     | 43.8  |      | 21.2  | 53.7  |      | 52.5  | 38.4  |      | 54.7  | 15.9  |      |
| LOS                     | D        | D     |      | С     | D     |      | D     | D     |      | D     | В     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
|                         |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 7.0  | 4.0  |
| Total Split (s)         | 7.0  | 4.0  |
| Total Split (%)         | 8%   | 4%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     | NONC | NONC |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
|                         |      |      |
| Control Delay           |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |

### New Haven Two-Way Study 81: Church Street & George Street

|                              | ٦             | -         | $\mathbf{r}$ | 4          | -          | *          | 1    | Ť    | 1   | 1    | ţ    | ~   |
|------------------------------|---------------|-----------|--------------|------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                   | EBL           | EBT       | EBR          | WBL        | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBR |
| Approach Delay               |               | 50.2      |              |            | 44.1       |            |      | 40.7 |     |      | 23.8 |     |
| Approach LOS                 |               | D         |              |            | D          |            |      | D    |     |      | С    |     |
| Stops (vph)                  | 190           | 112       |              | 37         | 126        |            | 73   | 247  |     | 52   | 121  |     |
| Fuel Used(gal)               | 4             | 2         |              | 1          | 3          |            | 1    | 5    |     | 1    | 2    |     |
| CO Emissions (g/hr)          | 264           | 139       |              | 45         | 179        |            | 99   | 375  |     | 67   | 131  |     |
| NOx Emissions (g/hr)         | 51            | 27        |              | 9          | 35         |            | 19   | 73   |     | 13   | 25   |     |
| VOC Emissions (g/hr)         | 61            | 32        |              | 10         | 42         |            | 23   | 87   |     | 16   | 30   |     |
| Dilemma Vehicles (#)         | 0             | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)       | 108           | 79        |              | 30         | 100        |            | 48   | 203  |     | 35   | 56   |     |
| Queue Length 95th (ft)       | 148           | 122       |              | 43         | 128        |            | 95   | #494 |     | 76   | 108  |     |
| Internal Link Dist (ft)      |               | 324       |              |            | 444        |            |      | 373  |     |      | 335  |     |
| Turn Bay Length (ft)         | 150           |           |              | 150        |            |            |      |      |     | 75   |      |     |
| Base Capacity (vph)          | 358           | 415       |              | 327        | 299        |            | 180  | 653  |     | 154  | 613  |     |
| Starvation Cap Reductn       | 0             | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn        | 0             | 0         |              | 0          | 0          |            | 0    | 117  |     | 0    | 0    |     |
| Storage Cap Reductn          | 0             | 0         |              | 0          | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio            | 0.69          | 0.36      |              | 0.24       | 0.63       |            | 0.49 | 0.85 |     | 0.37 | 0.37 |     |
| Intersection Summary         |               |           |              |            |            |            |      |      |     |      |      |     |
| Area Type:                   | CBD           |           |              |            |            |            |      |      |     |      |      |     |
| Cycle Length: 90             |               |           |              |            |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 90    |               |           |              |            |            |            |      |      |     |      |      |     |
| Offset: 69 (77%), Reference  | ced to phase  | 4:NBT a   | nd 8:SBT     | , Start of | Yellow     |            |      |      |     |      |      |     |
| Natural Cycle: 80            |               |           |              |            |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Co    | ordinated     |           |              |            |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 0.85      |               |           |              |            |            |            |      |      |     |      |      |     |
| Intersection Signal Delay:   |               |           |              |            | tersectior |            | _    |      |     |      |      |     |
| Intersection Capacity Utiliz | ation 64.4%   |           |              | IC         | U Level    | of Service | e C  |      |     |      |      |     |
| Analysis Period (min) 15     |               |           |              |            |            |            |      |      |     |      |      |     |
| # 95th percentile volume     |               |           | leue may     | be longe   | r.         |            |      |      |     |      |      |     |
| Queue shown is maxim         | num after two | o cycles. |              |            |            |            |      |      |     |      |      |     |

Splits and Phases: 81: Church Street & George Street

| ₩ø9 | ₩<br>Ø2     | ▶ <sub>Ø1</sub> | <u>}</u> | Ø10 Ø4 (R) | Ø3   |
|-----|-------------|-----------------|----------|------------|------|
| 7s  | 24 s        | 18 s            | 4 s      | 24 s       | 13 s |
|     | <b>≁</b> ∞6 | <b>√</b> Ø5     |          | Ø8 (R)     | Ø7   |
|     | 35 s        | 7 s             |          | 23 s       | 14 s |

# New Haven Two-Way Study 1: Church Street & Chapel Street

|                         | •           |              | ~    | ~       | +            | A.   | •            | +            | *    | 6       | I                |      |
|-------------------------|-------------|--------------|------|---------|--------------|------|--------------|--------------|------|---------|------------------|------|
|                         | -           | -            | *    | *       |              | `    | 7            | -            |      |         | *                | -    |
| Lane Group              | EBL         | EBT          | EBR  | WBL     | WBT          | WBR  | NBL          | NBT          | NBR  | SBL     | SBT              | SBR  |
| Lane Configurations     | <u> </u>    | - î>         |      |         | đÞ.          |      | <u> </u>     | ef 👘         |      |         | - <del>4</del> > |      |
| Traffic Volume (vph)    | 31          | 279          | 26   | 52      | 367          | 83   | 119          | 480          | 129  | 26      | 207              | 52   |
| Future Volume (vph)     | 31          | 279          | 26   | 52      | 367          | 83   | 119          | 480          | 129  | 26      | 207              | 52   |
| Ideal Flow (vphpl)      | 1900        | 1900         | 1900 | 1900    | 1900         | 1900 | 1900         | 1900         | 1900 | 1900    | 1900             | 1900 |
| Grade (%)               |             | -1%          |      |         | -3%          |      |              | -6%          |      |         | -2%              |      |
| Storage Length (ft)     | 50          |              | 0    | 0       |              | 0    | 75           |              | 0    | 0       |                  | 0    |
| Storage Lanes           | 1           |              | 0    | 0       |              | 0    | 1            |              | 0    | 0       |                  | 0    |
| Taper Length (ft)       | 25          |              |      | 0       |              |      | 25           |              |      | 25      |                  |      |
| Lane Util. Factor       | 1.00        | 1.00         | 1.00 | 0.95    | 0.95         | 0.95 | 1.00         | 1.00         | 1.00 | 1.00    | 1.00             | 1.00 |
| Ped Bike Factor         | 0.84        | 0.95         |      |         | 0.89         |      |              | 0.87         |      |         | 0.93             |      |
| Frt                     |             | 0.987        |      |         | 0.975        |      |              | 0.968        |      |         | 0.975            |      |
| Flt Protected           | 0.950       |              |      |         | 0.995        |      | 0.950        |              |      |         | 0.996            |      |
| Satd. Flow (prot)       | 1547        | 1523         | 0    | 0       | 2559         | 0    | 1498         | 1355         | 0    | 0       | 1481             | 0    |
| Flt Permitted           | 0.302       |              |      |         | 0.765        |      | 0.950        |              |      |         | 0.642            |      |
| Satd. Flow (perm)       | 415         | 1523         | 0    | 0       | 1967         | 0    | 1498         | 1355         | 0    | 0       | 955              | 0    |
| Right Turn on Red       |             |              | No   |         |              | No   |              |              | No   |         |                  | No   |
| Satd. Flow (RTOR)       |             |              |      |         |              |      |              |              |      |         |                  |      |
| Link Speed (mph)        |             | 25           |      |         | 25           |      |              | 25           |      |         | 25               |      |
| Link Distance (ft)      |             | 413          |      |         | 476          |      |              | 522          |      |         | 476              |      |
| Travel Time (s)         |             | 11.3         |      |         | 13.0         |      |              | 14.2         |      |         | 13.0             |      |
| Confl. Peds. (#/hr)     | 218         |              | 218  | 291     |              | 291  |              |              | 229  | 229     |                  | 229  |
| Confl. Bikes (#/hr)     |             |              | 10   |         |              | 10   |              |              | 10   |         |                  | 10   |
| Peak Hour Factor        | 0.85        | 0.85         | 0.85 | 0.88    | 0.88         | 0.88 | 0.87         | 0.87         | 0.87 | 0.92    | 0.92             | 0.92 |
| Heavy Vehicles (%)      | 2%          | 2%           | 2%   | 2%      | 9%           | 4%   | 8%           | 6%           | 5%   | 2%      | 2%               | 2%   |
| Adj. Flow (vph)         | 36          | 328          | 31   | 59      | 417          | 94   | 137          | 552          | 148  | 28      | 225              | 57   |
| Shared Lane Traffic (%) |             |              |      |         |              |      |              |              |      |         |                  |      |
| Lane Group Flow (vph)   | 36          | 359          | 0    | 0       | 570          | 0    | 137          | 700          | 0    | 0       | 310              | 0    |
| Turn Type               | Perm        | NA           | Ŭ    | Perm    | NA           | 0    | Prot         | NA           | 0    | Perm    | NA               | Ū    |
| Protected Phases        | 1 0111      | 6            |      | 1 01111 | 2            |      | 7            | 4            |      | 1 01111 | 8                |      |
| Permitted Phases        | 6           | Ŭ            |      | 2       | _            |      |              |              |      | 8       | Ū                |      |
| Detector Phase          | 6           | 6            |      | 2       | 2            |      | 7            | 4            |      | 8       | 8                |      |
| Switch Phase            | Ŭ           | Ū            |      | -       | -            |      | ,            |              |      | Ŭ       | Ű                |      |
| Minimum Initial (s)     | 7.0         | 7.0          |      | 7.0     | 7.0          |      | 3.0          | 7.0          |      | 7.0     | 7.0              |      |
| Minimum Split (s)       | 17.0        | 17.0         |      | 17.0    | 17.0         |      | 7.0          | 17.0         |      | 17.0    | 17.0             |      |
| Total Split (s)         | 32.0        | 32.0         |      | 32.0    | 32.0         |      | 15.0         | 47.0         |      | 32.0    | 32.0             |      |
| Total Split (%)         | 35.6%       | 35.6%        |      | 35.6%   | 35.6%        |      | 16.7%        | 52.2%        |      | 35.6%   | 35.6%            |      |
| Yellow Time (s)         | 3.0         | 3.0          |      | 3.0     | 3.0          |      | 3.0          | 3.0          |      | 3.0     | 3.0              |      |
| All-Red Time (s)        | 1.0         | 1.0          |      | 1.0     | 1.0          |      | 1.0          | 1.0          |      | 1.0     | 1.0              |      |
| Lost Time Adjust (s)    | 0.0         | 0.0          |      | 1.0     | 0.0          |      | 0.0          | 0.0          |      | 1.0     | 0.0              |      |
| Total Lost Time (s)     | 4.0         | 4.0          |      |         | 4.0          |      | 4.0          | 4.0          |      |         | 4.0              |      |
| Lead/Lag                | т.0         | т.0          |      |         | т.0          |      | Lag          | т.0          |      | Lead    | Lead             |      |
| Lead-Lag Optimize?      |             |              |      |         |              |      | Lug          |              |      | LCau    | LCau             |      |
| Recall Mode             | None        | None         |      | None    | None         |      | None         | C-Min        |      | C-Min   | C-Min            |      |
| Act Effct Green (s)     | 27.4        | 27.4         |      | NULL    | 27.4         |      | 11.0         | 49.4         |      |         | 34.4             |      |
| Actuated g/C Ratio      | 0.30        | 0.30         |      |         | 0.30         |      | 0.12         | 49.4<br>0.55 |      |         | 0.38             |      |
| v/c Ratio               | 0.30        | 0.30         |      |         | 0.30         |      | 0.12         | 0.55         |      |         | 0.38             |      |
| Control Delay           | 30.8        | 0.78<br>41.4 |      |         | 0.95<br>58.8 |      | 0.75<br>53.6 | 0.94<br>36.1 |      |         | 0.85<br>51.5     |      |
| Queue Delay             | 30.8<br>0.0 | 41.4         |      |         | 58.8<br>0.0  |      | 53.0<br>0.0  | 30.1<br>0.1  |      |         | 0.0              |      |
| <b>,</b>                |             |              |      |         |              |      |              |              |      |         |                  |      |
| Total Delay             | 30.8        | 41.4         |      |         | 58.8         |      | 53.6         | 36.2         |      |         | 51.5             |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9    | Ø10   |
|-------------------------|-------|-------|
| Lane Configurations     |       |       |
| Traffic Volume (vph)    |       |       |
| Future Volume (vph)     |       |       |
| Ideal Flow (vphpl)      |       |       |
| Grade (%)               |       |       |
| Storage Length (ft)     |       |       |
| Storage Lanes           |       |       |
| Taper Length (ft)       |       |       |
| Lane Util. Factor       |       |       |
| Ped Bike Factor         |       |       |
| Frt                     |       |       |
| Flt Protected           |       |       |
| Satd. Flow (prot)       |       |       |
| Flt Permitted           |       |       |
|                         |       |       |
| Satd. Flow (perm)       |       |       |
| Right Turn on Red       |       |       |
| Satd. Flow (RTOR)       |       |       |
| Link Speed (mph)        |       |       |
| Link Distance (ft)      |       |       |
| Travel Time (s)         |       |       |
| Confl. Peds. (#/hr)     |       |       |
| Confl. Bikes (#/hr)     |       |       |
| Peak Hour Factor        |       |       |
| Heavy Vehicles (%)      |       |       |
| Adj. Flow (vph)         |       |       |
| Shared Lane Traffic (%) |       |       |
| Lane Group Flow (vph)   |       |       |
| Turn Type               |       |       |
| Protected Phases        | 9     | 10    |
| Permitted Phases        |       |       |
| Detector Phase          |       |       |
| Switch Phase            |       |       |
| Minimum Initial (s)     | 2.0   | 2.0   |
| Minimum Split (s)       | 7.0   | 4.0   |
| Total Split (s)         | 7.0   | 4.0   |
| Total Split (%)         | 8%    | 4%    |
| Yellow Time (s)         | 2.0   | 2.0   |
| All-Red Time (s)        | 0.0   | 0.0   |
| Lost Time Adjust (s)    | 510   | 0.0   |
| Total Lost Time (s)     |       |       |
| Lead/Lag                |       |       |
| Lead-Lag Optimize?      |       |       |
| Recall Mode             | None  | None  |
| Act Effct Green (s)     | NULLE | NULLE |
| .,                      |       |       |
| Actuated g/C Ratio      |       |       |
| v/c Ratio               |       |       |
| Control Delay           |       |       |
| Queue Delay             |       |       |
| Total Delay             |       |       |

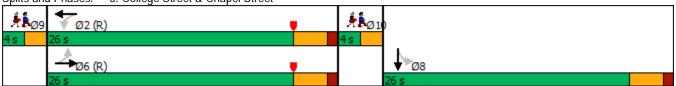
### New Haven Two-Way Study 1: Church Street & Chapel Street

|                                           | ۶             | -         | $\mathbf{\hat{v}}$ | 4          | +          | *          | 1    | 1     | 1   | 1   | ţ    | ~  |
|-------------------------------------------|---------------|-----------|--------------------|------------|------------|------------|------|-------|-----|-----|------|----|
| Lane Group                                | EBL           | EBT       | EBR                | WBL        | WBT        | WBR        | NBL  | NBT   | NBR | SBL | SBT  | SB |
| LOS                                       | С             | D         |                    |            | E          |            | D    | D     |     |     | D    |    |
| Approach Delay                            |               | 40.5      |                    |            | 58.8       |            |      | 39.1  |     |     | 51.5 |    |
| Approach LOS                              |               | D         |                    |            | E          |            |      | D     |     |     | D    |    |
| Stops (vph)                               | 25            | 265       |                    |            | 437        |            | 108  | 516   |     |     | 221  |    |
| Fuel Used(gal)                            | 0             | 5         |                    |            | 10         |            | 2    | 9     |     |     | 5    |    |
| CO Emissions (g/hr)                       | 28            | 326       |                    |            | 680        |            | 157  | 640   |     |     | 349  |    |
| NOx Emissions (g/hr)                      | 5             | 63        |                    |            | 132        |            | 30   | 125   |     |     | 68   |    |
| VOC Emissions (g/hr)                      | 6             | 76        |                    |            | 157        |            | 36   | 148   |     |     | 81   |    |
| Dilemma Vehicles (#)                      | 0             | 0         |                    |            | 0          |            | 0    | 0     |     |     | 0    |    |
| Queue Length 50th (ft)                    | 15            | 183       |                    |            | 164        |            | 84   | ~449  |     |     | 171  |    |
| Queue Length 95th (ft)                    | 40            | 267       |                    |            | #260       |            | m84  | m#423 |     |     | #339 |    |
| Internal Link Dist (ft)                   |               | 333       |                    |            | 396        |            |      | 442   |     |     | 396  |    |
| Turn Bay Length (ft)                      | 50            |           |                    |            |            |            | 75   |       |     |     |      |    |
| Base Capacity (vph)                       | 129           | 473       |                    |            | 611        |            | 183  | 743   |     |     | 364  |    |
| Starvation Cap Reductn                    | 0             | 0         |                    |            | 0          |            | 0    | 1     |     |     | 0    |    |
| Spillback Cap Reductn                     | 0             | 0         |                    |            | 0          |            | 0    | 0     |     |     | 0    |    |
| Storage Cap Reductn                       | 0             | 0         |                    |            | 0          |            | 0    | 0     |     |     | 0    |    |
| Reduced v/c Ratio                         | 0.28          | 0.76      |                    |            | 0.93       |            | 0.75 | 0.94  |     |     | 0.85 |    |
| Intersection Summary                      |               |           |                    |            |            |            |      |       |     |     |      |    |
| JI I                                      | CBD           |           |                    |            |            |            |      |       |     |     |      |    |
| Cycle Length: 90                          |               |           |                    |            |            |            |      |       |     |     |      |    |
| Actuated Cycle Length: 90                 |               |           |                    |            |            |            |      |       |     |     |      |    |
| Offset: 4 (4%), Referenced                | to phase 4:   | NBT and   | 8:SBTL,            | Start of \ | ellow      |            |      |       |     |     |      |    |
| Natural Cycle: 90                         |               |           |                    |            |            |            |      |       |     |     |      |    |
| Control Type: Actuated-Coc                | ordinated     |           |                    |            |            |            |      |       |     |     |      |    |
| Maximum v/c Ratio: 0.95                   |               |           |                    |            |            |            |      |       |     |     |      |    |
| Intersection Signal Delay: 4              |               |           |                    |            | tersectior |            |      |       |     |     |      |    |
| Intersection Capacity Utiliza             | ation 92.5%   |           |                    | IC         | U Level o  | of Service | e F  |       |     |     |      |    |
| Analysis Period (min) 15                  |               |           |                    |            |            |            |      |       |     |     |      |    |
| <ul> <li>Volume exceeds capaci</li> </ul> |               |           | ally infin         | ite.       |            |            |      |       |     |     |      |    |
| Queue shown is maximu                     |               |           |                    |            |            |            |      |       |     |     |      |    |
| # 95th percentile volume                  |               |           | eue may            | be longe   | er.        |            |      |       |     |     |      |    |
| Queue shown is maximu                     |               |           |                    |            |            |            |      |       |     |     |      |    |
| m Volume for 95th percen                  | ntile queue i | s metered | d by upst          | ream sigi  | nal.       |            |      |       |     |     |      |    |

### Splits and Phases: 1: Church Street & Chapel Street

| 1<br>1<br>09 | <b>↓</b> Ø2 |                 | • |
|--------------|-------------|-----------------|---|
| 7 s 🛛        | 32 s        | 4 s 47 s        |   |
|              | A 106       | ↓ Ø8 (R) ↓ ▲ Ø7 |   |
|              | 32 s        | 32 s 15 s       |   |

# New Haven Two-Way Study 3: College Street & Chapel Street


|                         | ۶     | ţ     | *    | 4     | t     | *    | •    | †    | *    | 1     | ţ     | -    |
|-------------------------|-------|-------|------|-------|-------|------|------|------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | 4     |      | ሻ     | 4Î    |      |      |      |      |       | 4     |      |
| Traffic Volume (vph)    | 41    | 232   | 26   | 21    | 330   | 83   | 0    | 0    | 0    | 93    | 217   | 98   |
| Future Volume (vph)     | 41    | 232   | 26   | 21    | 330   | 83   | 0    | 0    | 0    | 93    | 217   | 98   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900 | 1900 | 1900 | 1900  | 1900  | 1900 |
| Grade (%)               |       | -4%   |      |       | 5%    |      |      | -8%  |      |       | 4%    |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.96  |      | 0.87  | 0.94  |      |      |      |      |       | 0.87  |      |
| Frt                     |       | 0.988 |      |       | 0.970 |      |      |      |      |       | 0.968 |      |
| Flt Protected           |       | 0.993 |      | 0.950 |       |      |      |      |      |       | 0.989 |      |
| Satd. Flow (prot)       | 0     | 1609  | 0    | 1501  | 1382  | 0    | 0    | 0    | 0    | 0     | 1357  | 0    |
| Flt Permitted           |       | 0.749 |      | 0.500 |       |      |      |      |      |       | 0.989 |      |
| Satd. Flow (perm)       | 0     | 1201  | 0    | 690   | 1382  | 0    | 0    | 0    | 0    | 0     | 1272  | 0    |
| Right Turn on Red       |       |       | No   |       |       | No   |      |      | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |      |      |      |      |       |       |      |
| Link Speed (mph)        |       | 25    |      |       | 25    |      |      | 25   |      |       | 25    |      |
| Link Distance (ft)      |       | 502   |      |       | 519   |      |      | 547  |      |       | 897   |      |
| Travel Time (s)         |       | 13.7  |      |       | 14.2  |      |      | 14.9 |      |       | 24.5  |      |
| Confl. Peds. (#/hr)     | 118   |       | 118  | 118   |       | 118  |      |      |      | 118   |       | 121  |
| Confl. Bikes (#/hr)     |       |       | 10   |       |       | 10   |      |      |      |       |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.80  | 0.80  | 0.80 | 0.25 | 0.25 | 0.25 | 0.88  | 0.88  | 0.88 |
| Heavy Vehicles (%)      | 0%    | 0%    | 2%   | 2%    | 7%    | 4%   | 2%   | 2%   | 0%   | 22%   | 2%    | 0%   |
| Adj. Flow (vph)         | 45    | 252   | 28   | 26    | 413   | 104  | 0    | 0    | 0    | 106   | 247   | 111  |
| Shared Lane Traffic (%) |       |       |      |       |       |      |      |      |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 325   | 0    | 26    | 517   | 0    | 0    | 0    | 0    | 0     | 464   | 0    |
| Turn Type               | Perm  | NA    |      | Perm  | NA    |      |      |      |      | Perm  | NA    |      |
| Protected Phases        |       | 6     |      |       | 2     |      |      |      |      |       | 8     |      |
| Permitted Phases        | 6     |       |      | 2     |       |      |      |      |      | 8     |       |      |
| Detector Phase          | 6     | 6     |      | 2     | 2     |      |      |      |      | 8     | 8     |      |
| Switch Phase            |       |       |      |       |       |      |      |      |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 7.0   | 7.0   |      |      |      |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |      | 17.0  | 17.0  |      |      |      |      | 17.0  | 17.0  |      |
| Total Split (s)         | 26.0  | 26.0  |      | 26.0  | 26.0  |      |      |      |      | 26.0  | 26.0  |      |
| Total Split (%)         | 43.3% | 43.3% |      | 43.3% | 43.3% |      |      |      |      | 43.3% | 43.3% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   |      |      |      |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   |      |      |      |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |      | 0.0   | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |      | 4.0   | 4.0   |      |      |      |      |       | 4.0   |      |
| Lead/Lag                |       |       |      |       |       |      |      |      |      |       |       |      |
| Lead-Lag Optimize?      |       |       |      |       |       |      |      |      |      |       |       |      |
| Recall Mode             | C-Min | C-Min |      | C-Min | C-Min |      |      |      |      | None  | None  |      |
| Act Effct Green (s)     |       | 23.6  |      | 23.6  | 23.6  |      |      |      |      |       | 22.0  |      |
| Actuated g/C Ratio      |       | 0.39  |      | 0.39  | 0.39  |      |      |      |      |       | 0.37  |      |
| v/c Ratio               |       | 0.69  |      | 0.10  | 0.95  |      |      |      |      |       | 1.00  |      |
| Control Delay           |       | 23.4  |      | 13.8  | 51.6  |      |      |      |      |       | 64.1  |      |
| Queue Delay             |       | 0.0   |      | 0.0   | 0.0   |      |      |      |      |       | 0.0   |      |
| Total Delay             |       | 23.4  |      | 13.8  | 51.6  |      |      |      |      |       | 64.1  |      |
| LOS                     |       | С     |      | В     | D     |      |      |      |      |       | E     |      |
| Approach Delay          |       | 23.4  |      |       | 49.8  |      |      |      |      |       | 64.1  |      |
| Approach LOS            |       | С     |      |       | D     |      |      |      |      |       | E     |      |

Lanes, Volumes, Timings SLR

| 9  | 10                         |
|----|----------------------------|
|    |                            |
|    |                            |
|    |                            |
| .0 | 2.0                        |
| .0 | 4.0                        |
| .0 | 4.0                        |
| %  | 7%                         |
| .0 | 2.0                        |
| .0 | 0.0                        |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
| ne | None                       |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    |                            |
|    | 0<br>0<br>0<br>%<br>0<br>0 |

|                                                                                                             | ≯           | -       | $\mathbf{F}$    | ∢           | +          | •          | <b>&lt;</b> | 1   | 1   | 1   | ţ    | ~   |
|-------------------------------------------------------------------------------------------------------------|-------------|---------|-----------------|-------------|------------|------------|-------------|-----|-----|-----|------|-----|
| Lane Group                                                                                                  | EBL         | EBT     | EBR             | WBL         | WBT        | WBR        | NBL         | NBT | NBR | SBL | SBT  | SBR |
| Stops (vph)                                                                                                 |             | 229     |                 | 16          | 318        |            |             |     |     |     | 325  |     |
| Fuel Used(gal)                                                                                              |             | 4       |                 | 0           | 7          |            |             |     |     |     | 10   |     |
| CO Emissions (g/hr)                                                                                         |             | 251     |                 | 15          | 517        |            |             |     |     |     | 677  |     |
| NOx Emissions (g/hr)                                                                                        |             | 49      |                 | 3           | 101        |            |             |     |     |     | 132  |     |
| VOC Emissions (g/hr)                                                                                        |             | 58      |                 | 3           | 120        |            |             |     |     |     | 157  |     |
| Dilemma Vehicles (#)                                                                                        |             | 0       |                 | 0           | 0          |            |             |     |     |     | 0    |     |
| Queue Length 50th (ft)                                                                                      |             | 95      |                 | 6           | ~190       |            |             |     |     |     | 163  |     |
| Queue Length 95th (ft)                                                                                      |             | m#164   |                 | 18          | #306       |            |             |     |     |     | #324 |     |
| Internal Link Dist (ft)                                                                                     |             | 422     |                 |             | 439        |            |             | 467 |     |     | 817  |     |
| Turn Bay Length (ft)                                                                                        |             |         |                 |             |            |            |             |     |     |     |      |     |
| Base Capacity (vph)                                                                                         |             | 472     |                 | 271         | 543        |            |             |     |     |     | 466  |     |
| Starvation Cap Reductn                                                                                      |             | 0       |                 | 0           | 0          |            |             |     |     |     | 0    |     |
| Spillback Cap Reductn                                                                                       |             | 0       |                 | 0           | 0          |            |             |     |     |     | 0    |     |
| Storage Cap Reductn                                                                                         |             | 0       |                 | 0           | 0          |            |             |     |     |     | 0    |     |
| Reduced v/c Ratio                                                                                           |             | 0.69    |                 | 0.10        | 0.95       |            |             |     |     |     | 1.00 |     |
| Intersection Summary                                                                                        |             |         |                 |             |            |            |             |     |     |     |      |     |
| <b>J</b>                                                                                                    | BD          |         |                 |             |            |            |             |     |     |     |      |     |
| Cycle Length: 60                                                                                            |             |         |                 |             |            |            |             |     |     |     |      |     |
| Actuated Cycle Length: 60                                                                                   |             |         |                 |             |            |            |             |     |     |     |      |     |
| Offset: 0 (0%), Referenced to                                                                               | o phase 2:  | WBTL an | d 6:EBTI        | _, Start of | Yellow     |            |             |     |     |     |      |     |
| Natural Cycle: 80                                                                                           |             |         |                 |             |            |            |             |     |     |     |      |     |
| Control Type: Actuated-Coord                                                                                | dinated     |         |                 |             |            |            |             |     |     |     |      |     |
| Maximum v/c Ratio: 1.00                                                                                     |             |         |                 |             |            |            |             |     |     |     |      |     |
| Intersection Signal Delay: 48                                                                               |             |         |                 |             | tersectior |            | _           |     |     |     |      |     |
| Intersection Capacity Utilizati                                                                             | ion 81.2%   |         |                 | IC          | CU Level ( | of Service | e D         |     |     |     |      |     |
| Analysis Period (min) 15                                                                                    |             |         |                 |             |            |            |             |     |     |     |      |     |
| <ul> <li>Volume exceeds capacity</li> </ul>                                                                 |             |         | cally infin     | ite.        |            |            |             |     |     |     |      |     |
| Queue shown is maximum after two cycles.<br># 95th percentile volume exceeds capacity, queue may be longer. |             |         |                 |             |            |            |             |     |     |     |      |     |
|                                                                                                             |             |         | ieue may        | be longe    | ۶r.        |            |             |     |     |     |      |     |
| Queue shown is maximum                                                                                      |             |         | al lass sur - 4 |             | I          |            |             |     |     |     |      |     |
| m Volume for 95th percenti                                                                                  | lie queue l | smelere | u by upst       | ream sigi   | 121.       |            |             |     |     |     |      |     |

Splits and Phases: 3: College Street & Chapel Street



### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                         | ≯     | +     | *    | 4     | +     | •     | •     | 1     | 1    | 1    | Ŧ    | ~    |
|-------------------------|-------|-------|------|-------|-------|-------|-------|-------|------|------|------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations     |       | \$    |      |       | र्स   | *     |       | 4î b  |      |      |      |      |
| Traffic Volume (vph)    | 103   | 310   | 26   | 26    | 351   | 269   | 191   | 403   | 52   | 0    | 0    | 0    |
| Future Volume (vph)     | 103   | 310   | 26   | 26    | 351   | 269   | 191   | 403   | 52   | 0    | 0    | 0    |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  | 1900  | 1900  | 1900 | 1900 | 1900 | 1900 |
| Grade (%)               |       | -5%   |      |       | -4%   |       |       | -10%  |      |      | 5%   |      |
| Storage Length (ft)     | 50    |       | 0    | 50    | .,,   | 100   | 125   |       | 0    | 0    | .,.  | 0    |
| Storage Lanes           | 0     |       | 0    | 0     |       | 1     | 1     |       | 0    | 0    |      | 0    |
| Taper Length (ft)       | 25    |       | ,    | 25    |       |       | 25    |       | Ţ    | 25   |      |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  | 0.95  | 0.95  | 0.95 | 1.00 | 1.00 | 1.00 |
| Ped Bike Factor         |       | 0.97  |      |       | 0.99  | 0.75  |       | 0.91  | 0.00 |      |      |      |
| Frt                     |       | 0.992 |      |       | 0.00  | 0.850 |       | 0.988 |      |      |      |      |
| Flt Protected           |       | 0.988 |      |       | 0.997 | 0.000 |       | 0.985 |      |      |      |      |
| Satd. Flow (prot)       | 0     | 1603  | 0    | 0     | 1619  | 1419  | 0     | 3015  | 0    | 0    | 0    | 0    |
| Flt Permitted           | Ŭ     | 0.720 | Ŭ    | Ū     | 0.954 | 1110  | Ŭ     | 0.985 | Ŭ    | Ŭ    | Ŭ    | Ū    |
| Satd. Flow (perm)       | 0     | 1151  | 0    | 0     | 1533  | 1071  | 0     | 2801  | 0    | 0    | 0    | 0    |
| Right Turn on Red       | U     | 1101  | No   | U     | 1000  | No    | 0     | 2001  | No   | U    | U    | No   |
| Satd. Flow (RTOR)       |       |       | 110  |       |       | 110   |       |       | NO   |      |      | 110  |
| Link Speed (mph)        |       | 25    |      |       | 25    |       |       | 25    |      |      | 25   |      |
| Link Distance (ft)      |       | 413   |      |       | 498   |       |       | 404   |      |      | 482  |      |
| Travel Time (s)         |       | 11.3  |      |       | 13.6  |       |       | 11.0  |      |      | 13.1 |      |
| Confl. Peds. (#/hr)     | 112   | 11.0  | 112  | 183   | 10.0  | 183   | 112   | 11.0  | 112  |      | 10.1 |      |
| Confl. Bikes (#/hr)     | 112   |       | 10   | 100   |       | 10    | 112   |       | 10   |      |      | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.87  | 0.87  | 0.87  | 0.87  | 0.87  | 0.87 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles (%)      | 2%    | 2%    | 2%   | 2%    | 4%    | 1%    | 5%    | 4%    | 2%   | 2%   | 2%   | 2%   |
| Adj. Flow (vph)         | 112   | 337   | 28   | 30    | 403   | 309   | 220   | 463   | 60   | 0    | 0    | 0    |
| Shared Lane Traffic (%) | 112   | 001   | 20   | 00    | 400   | 000   | 220   | 400   | 00   | U    | U    | Ū    |
| Lane Group Flow (vph)   | 0     | 477   | 0    | 0     | 433   | 309   | 0     | 743   | 0    | 0    | 0    | 0    |
| Turn Type               | Perm  | NA    | Ŭ    | Perm  | NA    | Perm  | Split | NA    | Ű    | Ŭ    | Ŭ    | Ű    |
| Protected Phases        |       | 6     |      |       | 2     |       | 4     | 4     |      |      |      |      |
| Permitted Phases        | 6     | Ŭ     |      | 2     | _     | 2     | •     |       |      |      |      |      |
| Detector Phase          | 6     | 6     |      | 2     | 2     | 2     | 4     | 4     |      |      |      |      |
| Switch Phase            | •     | •     |      |       | _     |       |       |       |      |      |      |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 7.0   | 7.0   | 7.0   | 7.0   | 7.0   |      |      |      |      |
| Minimum Split (s)       | 18.0  | 18.0  |      | 18.0  | 18.0  | 18.0  | 18.0  | 18.0  |      |      |      |      |
| Total Split (s)         | 34.0  | 34.0  |      | 34.0  | 34.0  | 34.0  | 18.0  | 18.0  |      |      |      |      |
| Total Split (%)         | 56.7% | 56.7% |      | 56.7% | 56.7% | 56.7% | 30.0% | 30.0% |      |      |      |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |      |      |      |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   | 1.0   | 1.0   | 1.0   |      |      |      |      |
| Lost Time Adjust (s)    | -     | 0.0   |      |       | 0.0   | 0.0   | -     | 0.0   |      |      |      |      |
| Total Lost Time (s)     |       | 4.0   |      |       | 4.0   | 4.0   |       | 4.0   |      |      |      |      |
| Lead/Lag                |       |       |      |       |       |       |       |       |      |      |      |      |
| Lead-Lag Optimize?      |       |       |      |       |       |       |       |       |      |      |      |      |
| Recall Mode             | None  | None  |      | None  | None  | None  | C-Min | C-Min |      |      |      |      |
| Act Effct Green (s)     |       | 26.5  |      |       | 26.5  | 26.5  |       | 22.3  |      |      |      |      |
| Actuated g/C Ratio      |       | 0.44  |      |       | 0.44  | 0.44  |       | 0.37  |      |      |      |      |
| v/c Ratio               |       | 0.94  |      |       | 0.64  | 0.65  |       | 0.66  |      |      |      |      |
| Control Delay           |       | 44.9  |      |       | 17.3  | 19.8  |       | 25.1  |      |      |      |      |
| Queue Delay             |       | 0.0   |      |       | 0.0   | 0.0   |       | 0.0   |      |      |      |      |
| Total Delay             |       | 44.9  |      |       | 17.3  | 19.8  |       | 25.1  |      |      |      |      |
|                         |       | 44.3  |      |       | 17.3  | 19.0  |       | 20.1  |      |      |      |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Grade (%)               |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Flt Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     |      |      |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
|                         |      |      |
| Queue Delay             |      |      |

### New Haven Two-Way Study 11: Church Street/Whitney Avenue & Grove Street

|                                   | ٦           | -       | $\mathbf{F}$ | 4        | ←          | •          | 1   | 1    | 1   | 5   | ŧ   | ~   |
|-----------------------------------|-------------|---------|--------------|----------|------------|------------|-----|------|-----|-----|-----|-----|
| Lane Group                        | EBL         | EBT     | EBR          | WBL      | WBT        | WBR        | NBL | NBT  | NBR | SBL | SBT | SBR |
| LOS                               |             | D       |              |          | В          | В          |     | С    |     |     |     |     |
| Approach Delay                    |             | 44.9    |              |          | 18.3       |            |     | 25.1 |     |     |     |     |
| Approach LOS                      |             | D       |              |          | В          |            |     | С    |     |     |     |     |
| Stops (vph)                       |             | 366     |              |          | 270        | 199        |     | 436  |     |     |     |     |
| Fuel Used(gal)                    |             | 7       |              |          | 4          | 3          |     | 7    |     |     |     |     |
| CO Emissions (g/hr)               |             | 487     |              |          | 277        | 209        |     | 503  |     |     |     |     |
| NOx Emissions (g/hr)              |             | 95      |              |          | 54         | 41         |     | 98   |     |     |     |     |
| VOC Emissions (g/hr)              |             | 113     |              |          | 64         | 48         |     | 116  |     |     |     |     |
| Dilemma Vehicles (#)              |             | 0       |              |          | 0          | 0          |     | 0    |     |     |     |     |
| Queue Length 50th (ft)            |             | 144     |              |          | 107        | 77         |     | 110  |     |     |     |     |
| Queue Length 95th (ft)            |             | #305    |              |          | 168        | 137        |     | #244 |     |     |     |     |
| Internal Link Dist (ft)           |             | 333     |              |          | 418        |            |     | 324  |     |     | 402 |     |
| Turn Bay Length (ft)              |             |         |              |          |            | 100        |     |      |     |     |     |     |
| Base Capacity (vph)               |             | 575     |              |          | 766        | 535        |     | 1121 |     |     |     |     |
| Starvation Cap Reductn            |             | 0       |              |          | 0          | 0          |     | 0    |     |     |     |     |
| Spillback Cap Reductn             |             | 0       |              |          | 0          | 0          |     | 0    |     |     |     |     |
| Storage Cap Reductn               |             | 0       |              |          | 0          | 0          |     | 0    |     |     |     |     |
| Reduced v/c Ratio                 |             | 0.83    |              |          | 0.57       | 0.58       |     | 0.66 |     |     |     |     |
| Intersection Summary              |             |         |              |          |            |            |     |      |     |     |     |     |
|                                   | CBD         |         |              |          |            |            |     |      |     |     |     |     |
| Cycle Length: 60                  |             |         |              |          |            |            |     |      |     |     |     |     |
| Actuated Cycle Length: 60         |             |         |              |          |            |            |     |      |     |     |     |     |
| Offset: 50 (83%), Reference       | d to phase  | 4:NBTL, | Start of Y   | ellow    |            |            |     |      |     |     |     |     |
| Natural Cycle: 60                 |             |         |              |          |            |            |     |      |     |     |     |     |
| Control Type: Actuated-Coo        | rdinated    |         |              |          |            |            |     |      |     |     |     |     |
| Maximum v/c Ratio: 0.94           |             |         |              |          |            |            |     |      |     |     |     |     |
| Intersection Signal Delay: 27     |             |         |              |          | tersection |            |     |      |     |     |     |     |
| Intersection Capacity Utilization | tion 83.6%  |         |              | IC       | U Level c  | of Service | E   |      |     |     |     |     |
| Analysis Period (min) 15          |             |         |              |          |            |            |     |      |     |     |     |     |
| # 95th percentile volume e        | •           |         | eue may      | be longe | ſ.         |            |     |      |     |     |     |     |
| Queue shown is maximu             | m after two | cycles. |              |          |            |            |     |      |     |     |     |     |
|                                   |             |         |              |          |            |            |     |      |     |     |     |     |

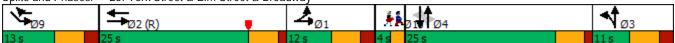
Splits and Phases: 11: Church Street/Whitney Avenue & Grove Street

| ₩ <b>1</b> @9 | ∲<br>Ø2      | H <sub>Ø1</sub> | 0 🔨 Ø4 (R) | Ţ |
|---------------|--------------|-----------------|------------|---|
| 4 s 🔰         | 34 s         | 4 s             | 18 s       |   |
|               | <u>24</u> 06 |                 |            |   |

| Lane Group              | Ø9 | Ø10 |  |  |  |  |
|-------------------------|----|-----|--|--|--|--|
| LOS                     |    |     |  |  |  |  |
| Approach Delay          |    |     |  |  |  |  |
| Approach LOS            |    |     |  |  |  |  |
| Stops (vph)             |    |     |  |  |  |  |
| Fuel Used(gal)          |    |     |  |  |  |  |
| CO Emissions (g/hr)     |    |     |  |  |  |  |
| NOx Emissions (g/hr)    |    |     |  |  |  |  |
| VOC Emissions (g/hr)    |    |     |  |  |  |  |
| Dilemma Vehicles (#)    |    |     |  |  |  |  |
| Queue Length 50th (ft)  |    |     |  |  |  |  |
| Queue Length 95th (ft)  |    |     |  |  |  |  |
| Internal Link Dist (ft) |    |     |  |  |  |  |
| Turn Bay Length (ft)    |    |     |  |  |  |  |
| Base Capacity (vph)     |    |     |  |  |  |  |
| Starvation Cap Reductn  |    |     |  |  |  |  |
| Spillback Cap Reductn   |    |     |  |  |  |  |
| Storage Cap Reductn     |    |     |  |  |  |  |
| Reduced v/c Ratio       |    |     |  |  |  |  |
| Intersection Summary    |    |     |  |  |  |  |

# New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                         | ٦     | -     | $\mathbf{F}$ | +     | *_    | <b>~</b> | Ť     | 1    | 1     | ţ     | ~    | <b>`</b> + |
|-------------------------|-------|-------|--------------|-------|-------|----------|-------|------|-------|-------|------|------------|
| Lane Group              | EBL   | EBT   | EBR          | WBT   | WBR   | NBL2     | NBT   | NBR  | SBL   | SBT   | SBR  | SEL        |
| Lane Configurations     | ۲     | 4     |              | 1     | 1     | ۲        | f,    |      |       | 4     |      | ۲          |
| Traffic Volume (vph)    | 52    | 522   | 26           | 269   | 26    | 248      | 134   | 232  | 26    | 103   | 26   | 30         |
| Future Volume (vph)     | 52    | 522   | 26           | 269   | 26    | 248      | 134   | 232  | 26    | 103   | 26   | 30         |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900  | 1900  | 1900     | 1900  | 1900 | 1900  | 1900  | 1900 | 1900       |
| Storage Length (ft)     | 0     |       | 0            |       | 0     |          |       | 0    | 0     |       | 0    | 0          |
| Storage Lanes           | 1     |       | 0            |       | 1     |          |       | 0    | 0     |       | 0    | 1          |
| Taper Length (ft)       | 0     |       |              |       |       |          |       |      | 0     |       |      | 0          |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00       |
| Ped Bike Factor         |       | 0.98  |              |       |       |          | 0.79  |      |       | 0.87  |      |            |
| Frt                     |       | 0.993 |              |       | 0.850 |          | 0.905 |      |       | 0.977 |      |            |
| Flt Protected           | 0.950 |       |              |       |       | 0.950    |       |      |       | 0.992 |      | 0.950      |
| Satd. Flow (prot)       | 1586  | 1682  | 0            | 1801  | 892   | 1616     | 1262  | 0    | 0     | 1554  | 0    | 997        |
| Flt Permitted           | 0.950 |       |              |       |       | 0.566    |       |      |       | 0.549 |      | 0.950      |
| Satd. Flow (perm)       | 1586  | 1682  | 0            | 1801  | 892   | 963      | 1262  | 0    | 0     | 838   | 0    | 997        |
| Right Turn on Red       |       |       | No           |       |       |          |       | No   |       |       |      |            |
| Satd. Flow (RTOR)       |       |       |              |       |       |          |       |      |       |       |      |            |
| Link Speed (mph)        |       | 25    |              | 25    |       |          | 25    |      |       | 25    |      | 25         |
| Link Distance (ft)      |       | 309   |              | 401   |       |          | 898   |      |       | 511   |      | 228        |
| Travel Time (s)         |       | 8.4   |              | 10.9  |       |          | 24.5  |      |       | 13.9  |      | 6.2        |
| Confl. Peds. (#/hr)     |       |       | 282          |       |       |          |       | 165  | 165   |       | 376  |            |
| Confl. Bikes (#/hr)     |       |       | 15           |       | 15    |          |       | 15   |       |       | 15   |            |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92         | 0.92  | 0.92  | 0.90     | 0.90  | 0.90 | 0.92  | 0.92  | 0.92 | 0.94       |
| Heavy Vehicles (%)      | 10%   | 6%    | 2%           | 2%    | 75%   | 8%       | 2%    | 6%   | 2%    | 2%    | 2%   | 75%        |
| Adj. Flow (vph)         | 57    | 567   | 28           | 292   | 28    | 276      | 149   | 258  | 28    | 112   | 28   | 32         |
| Shared Lane Traffic (%) |       |       |              |       |       |          |       |      |       |       |      |            |
| Lane Group Flow (vph)   | 57    | 595   | 0            | 292   | 28    | 276      | 407   | 0    | 0     | 168   | 0    | 32         |
| Turn Type               | Prot  | NA    |              | NA    | Over  | D.P+P    | NA    |      | Perm  | NA    |      | Prot       |
| Protected Phases        | 1     | 12    |              | 2     | 9     | 3        | 34    |      |       | 4     |      | 9          |
| Permitted Phases        |       |       |              |       |       | 4        |       |      | 4     |       |      |            |
| Detector Phase          | 1     | 12    |              | 2     | 9     | 3        | 34    |      | 4     | 4     |      | 9          |
| Switch Phase            |       |       |              |       |       |          |       |      |       |       |      |            |
| Minimum Initial (s)     | 4.0   |       |              | 12.0  | 2.0   | 4.0      |       |      | 12.0  | 12.0  |      | 2.0        |
| Minimum Split (s)       | 10.0  |       |              | 18.0  | 10.0  | 10.0     |       |      | 19.0  | 19.0  |      | 10.0       |
| Total Split (s)         | 12.0  |       |              | 25.0  | 13.0  | 11.0     |       |      | 25.0  | 25.0  |      | 13.0       |
| Total Split (%)         | 13.3% |       |              | 27.8% | 14.4% | 12.2%    |       |      | 27.8% | 27.8% |      | 14.4%      |
| Yellow Time (s)         | 4.0   |       |              | 4.0   | 4.0   | 4.0      |       |      | 4.0   | 4.0   |      | 4.0        |
| All-Red Time (s)        | 2.0   |       |              | 1.0   | 2.0   | 2.0      |       |      | 1.0   | 1.0   |      | 2.0        |
| Lost Time Adjust (s)    | 0.0   |       |              | 0.0   | 0.0   | 0.0      |       |      |       | 0.0   |      | 0.0        |
| Total Lost Time (s)     | 6.0   |       |              | 5.0   | 6.0   | 6.0      |       |      |       | 5.0   |      | 6.0        |
| Lead/Lag                | Lag   |       |              | Lead  |       | Lag      |       |      | Lead  | Lead  |      |            |
| Lead-Lag Optimize?      | -     |       |              |       |       |          |       |      |       |       |      |            |
| Recall Mode             | None  |       |              | C-Min | None  | None     |       |      | None  | None  |      | None       |
| Act Effct Green (s)     | 6.0   | 35.3  |              | 24.3  | 6.6   | 24.0     | 30.0  |      |       | 20.0  |      | 6.6        |
| Actuated g/C Ratio      | 0.07  | 0.39  |              | 0.27  | 0.07  | 0.27     | 0.33  |      |       | 0.22  |      | 0.07       |
| v/c Ratio               | 0.54  | 0.90  |              | 0.60  | 0.43  | 0.94     | 0.97  |      |       | 0.90  |      | 0.44       |
| Control Delay           | 60.8  | 47.6  |              | 37.1  | 60.2  | 71.6     | 68.7  |      |       | 81.9  |      | 58.8       |
| Queue Delay             | 0.0   | 0.0   |              | 0.0   | 0.0   | 0.0      | 0.0   |      |       | 0.0   |      | 0.0        |
| Total Delay             | 60.8  | 47.6  |              | 37.1  | 60.2  | 71.6     | 68.7  |      |       | 81.9  |      | 58.8       |
| LOS                     | E     | D     |              | D     | E     | E        | E     |      |       | F     |      | E          |


Lanes, Volumes, Timings SLR

| Lane Group     Ø10       Lane Configurations     Traffic Volume (vph)       Future Volume (vph)     Future Volume (vph) |
|-------------------------------------------------------------------------------------------------------------------------|
| Traffic Volume (vph)                                                                                                    |
|                                                                                                                         |
|                                                                                                                         |
| Ideal Flow (vphpl)                                                                                                      |
| Storage Length (ft)                                                                                                     |
| Storage Lanes                                                                                                           |
| Taper Length (ft)                                                                                                       |
| Lane Util. Factor                                                                                                       |
| Ped Bike Factor                                                                                                         |
| Frt                                                                                                                     |
| Fit Protected                                                                                                           |
|                                                                                                                         |
| Satd. Flow (prot)<br>Flt Permitted                                                                                      |
|                                                                                                                         |
| Satd. Flow (perm)                                                                                                       |
| Right Turn on Red                                                                                                       |
| Satd. Flow (RTOR)                                                                                                       |
| Link Speed (mph)                                                                                                        |
| Link Distance (ft)                                                                                                      |
| Travel Time (s)                                                                                                         |
| Confl. Peds. (#/hr)                                                                                                     |
| Confl. Bikes (#/hr)                                                                                                     |
| Peak Hour Factor                                                                                                        |
| Heavy Vehicles (%)                                                                                                      |
| Adj. Flow (vph)                                                                                                         |
| Shared Lane Traffic (%)                                                                                                 |
| Lane Group Flow (vph)                                                                                                   |
| Turn Type                                                                                                               |
| Protected Phases 10                                                                                                     |
| Permitted Phases                                                                                                        |
| Detector Phase                                                                                                          |
| Switch Phase                                                                                                            |
| Minimum Initial (s) 2.0                                                                                                 |
| Minimum Split (s) 4.0                                                                                                   |
| Total Split (s) 4.0                                                                                                     |
| Total Split (%) 4%                                                                                                      |
| Yellow Time (s) 2.0                                                                                                     |
| All-Red Time (s) 0.0                                                                                                    |
| Lost Time Adjust (s)                                                                                                    |
| Total Lost Time (s)                                                                                                     |
| Lead/Lag                                                                                                                |
| Lead-Lag Optimize?                                                                                                      |
|                                                                                                                         |
| Recall Mode None                                                                                                        |
| Act Effct Green (s)                                                                                                     |
| Actuated g/C Ratio                                                                                                      |
| v/c Ratio                                                                                                               |
| Control Delay                                                                                                           |
| Queue Delay                                                                                                             |
| Total Delay                                                                                                             |
| LOS                                                                                                                     |

# New Haven Two-Way Study 23: York Street & Elm Street & Broadway

|                                                                                                                  | ٦           | -       | $\mathbf{F}$ | -        | *          | 1          | 1    | 1   | 1   | ţ    | ~   | \$   |
|------------------------------------------------------------------------------------------------------------------|-------------|---------|--------------|----------|------------|------------|------|-----|-----|------|-----|------|
| Lane Group                                                                                                       | EBL         | EBT     | EBR          | WBT      | WBR        | NBL2       | NBT  | NBR | SBL | SBT  | SBR | SEL  |
| Approach Delay                                                                                                   |             | 48.8    |              | 39.1     |            |            | 69.8 |     |     | 81.9 |     | 58.8 |
| Approach LOS                                                                                                     |             | D       |              | D        |            |            | E    |     |     | F    |     | E    |
| Stops (vph)                                                                                                      | 49          | 427     |              | 232      | 27         | 198        | 306  |     |     | 128  |     | 31   |
| Fuel Used(gal)                                                                                                   | 1           | 8       |              | 4        | 1          | 6          | 9    |     |     | 4    |     | 1    |
| CO Emissions (g/hr)                                                                                              | 68          | 586     |              | 268      | 36         | 438        | 635  |     |     | 290  |     | 52   |
| NOx Emissions (g/hr)                                                                                             | 13          | 114     |              | 52       | 7          | 85         | 124  |     |     | 56   |     | 10   |
| VOC Emissions (g/hr)                                                                                             | 16          | 136     |              | 62       | 8          | 102        | 147  |     |     | 67   |     | 12   |
| Dilemma Vehicles (#)                                                                                             | 0           | 0       |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0    |
| Queue Length 50th (ft)                                                                                           | 32          | ~365    |              | 155      | 15         | 125        | 225  |     |     | 93   |     | 18   |
| Queue Length 95th (ft)                                                                                           | #83         | #567    |              | #266     | #48        | #252       | #412 |     |     | #215 |     | #52  |
| Internal Link Dist (ft)                                                                                          |             | 229     |              | 321      |            |            | 818  |     |     | 431  |     | 148  |
| Turn Bay Length (ft)                                                                                             |             |         |              |          |            | 150        |      |     |     |      |     |      |
| Base Capacity (vph)                                                                                              | 105         | 659     |              | 486      | 69         | 293        | 420  |     |     | 186  |     | 77   |
| Starvation Cap Reductn                                                                                           | 0           | 0       |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0    |
| Spillback Cap Reductn                                                                                            | 0           | 0       |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0    |
| Storage Cap Reductn                                                                                              | 0           | 0       |              | 0        | 0          | 0          | 0    |     |     | 0    |     | 0    |
| Reduced v/c Ratio                                                                                                | 0.54        | 0.90    |              | 0.60     | 0.41       | 0.94       | 0.97 |     |     | 0.90 |     | 0.42 |
| Intersection Summary                                                                                             |             |         |              |          |            |            |      |     |     |      |     |      |
| Area Type:                                                                                                       | Other       |         |              |          |            |            |      |     |     |      |     |      |
| Cycle Length: 90                                                                                                 |             |         |              |          |            |            |      |     |     |      |     |      |
| Actuated Cycle Length: 90                                                                                        |             |         |              |          |            |            |      |     |     |      |     |      |
| Offset: 5 (6%), Referenced                                                                                       | to phase 2  | EBWB, S | tart of Ye   | ellow    |            |            |      |     |     |      |     |      |
| Natural Cycle: 90                                                                                                |             |         |              |          |            |            |      |     |     |      |     |      |
| Control Type: Actuated-Co                                                                                        | ordinated   |         |              |          |            |            |      |     |     |      |     |      |
| Maximum v/c Ratio: 0.97                                                                                          |             |         |              |          |            |            |      |     |     |      |     |      |
| Intersection Signal Delay: !                                                                                     |             |         |              |          | tersectior |            |      |     |     |      |     |      |
| Intersection Capacity Utiliz                                                                                     | ation 89.5% | )       |              | IC       | CU Level   | of Service | εE   |     |     |      |     |      |
| Analysis Period (min) 15                                                                                         |             |         |              |          |            |            |      |     |     |      |     |      |
| <ul> <li>Volume exceeds capacity, queue is theoretically infinite.</li> </ul>                                    |             |         |              |          |            |            |      |     |     |      |     |      |
| Queue shown is maximum after two cycles.         # 95th percentile volume exceeds capacity, queue may be longer. |             |         |              |          |            |            |      |     |     |      |     |      |
|                                                                                                                  |             |         | ieue may     | be longe | er.        |            |      |     |     |      |     |      |
| Queue shown is maximum after two cycles.                                                                         |             |         |              |          |            |            |      |     |     |      |     |      |
|                                                                                                                  |             |         |              |          |            |            |      |     |     |      |     |      |

| Splits and Phases: | 23: York Street & Elm Street & Broadway |
|--------------------|-----------------------------------------|
|--------------------|-----------------------------------------|



# New Haven Two-Way Study 24: York Street & Chapel Street

| -                       | ۶                 | -     | $\mathbf{F}$ | 4     | +     | ×    | •        | 1     | 1    | 1        | Ļ     | ~    |
|-------------------------|-------------------|-------|--------------|-------|-------|------|----------|-------|------|----------|-------|------|
| Lane Group              | EBL               | EBT   | EBR          | WBL   | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     |                   | 4     |              | 5     | 4Î    |      | 5        | 4Î    |      | 5        | 4Î    |      |
| Traffic Volume (vph)    | 26                | 26    | 26           | 26    | 310   | 118  | 134      | 578   | 78   | 26       | 103   | 52   |
| Future Volume (vph)     | 26                | 26    | 26           | 26    | 310   | 118  | 134      | 578   | 78   | 26       | 103   | 52   |
| Ideal Flow (vphpl)      | 1900              | 1900  | 1900         | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 |
| Lane Width (ft)         | 11                | 11    | 11           | 11    | 11    | 11   | 10       | 11    | 11   | 10       | 11    | 11   |
| Storage Length (ft)     | 50                |       | 0            | 50    |       | 0    | 50       |       | 0    | 50       |       | 0    |
| Storage Lanes           | 0                 |       | 0            | 1     |       | 0    | 1        |       | 0    | 1        |       | 0    |
| Taper Length (ft)       | 25                |       | Ű            | 25    |       | Ű    | 25       |       | Ű    | 25       |       | Ű    |
| Lane Util. Factor       | 1.00              | 1.00  | 1.00         | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 1.00              | 0.94  | 1.00         | 0.88  | 0.95  | 1.00 | 0.89     | 0.98  | 1.00 | 1.00     | 0.95  | 1.00 |
| Frt                     |                   | 0.955 |              | 0.00  | 0.959 |      | 0.07     | 0.982 |      |          | 0.949 |      |
| Flt Protected           |                   | 0.984 |              | 0.950 | 0.757 |      | 0.950    | 0.702 |      | 0.950    | 0.747 |      |
| Satd. Flow (prot)       | 0                 | 1598  | 0            | 1711  | 1613  | 0    | 1668     | 1749  | 0    | 1652     | 1615  | 0    |
| Flt Permitted           | 0                 | 0.540 | 0            | 0.781 | 1015  | 0    | 0.650    | 1/47  | 0    | 0.148    | 1015  | 0    |
| Satd. Flow (perm)       | 0                 | 877   | 0            | 1236  | 1613  | 0    | 1016     | 1749  | 0    | 257      | 1615  | 0    |
|                         | 0                 | 0//   | No           | 1230  | 1013  | No   | 1010     | 1749  | No   | 207      | 1010  | No   |
| Right Turn on Red       |                   |       | INU          |       |       | INO  |          |       | INU  |          |       | INU  |
| Satd. Flow (RTOR)       |                   | ЭГ    |              |       | ٦F    |      |          | ٦F    |      |          | ٦F    |      |
| Link Speed (mph)        |                   | 25    |              |       | 25    |      |          | 25    |      |          | 25    |      |
| Link Distance (ft)      |                   | 511   |              |       | 419   |      |          | 515   |      |          | 898   | _    |
| Travel Time (s)         | <i>(</i> <b>^</b> | 13.9  | ( )          | ( )   | 11.4  | ( )  | <i>.</i> | 14.0  | ( )  | <i>.</i> | 24.5  | ( )  |
| Confl. Peds. (#/hr)     | 60                |       | 60           | 60    |       | 60   | 60       |       | 60   | 60       |       | 60   |
| Confl. Bikes (#/hr)     |                   |       | 10           |       |       | 10   |          |       | 10   |          |       | 10   |
| Peak Hour Factor        | 0.92              | 0.92  | 0.92         | 0.75  | 0.75  | 0.75 | 0.80     | 0.80  | 0.80 | 0.92     | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 2%                | 2%    | 2%           | 2%    | 2%    | 10%  | 1%       | 1%    | 2%   | 2%       | 2%    | 2%   |
| Adj. Flow (vph)         | 28                | 28    | 28           | 35    | 413   | 157  | 168      | 723   | 98   | 28       | 112   | 57   |
| Shared Lane Traffic (%) |                   |       |              |       |       |      |          |       |      |          |       |      |
| Lane Group Flow (vph)   | 0                 | 84    | 0            | 35    | 570   | 0    | 168      | 821   | 0    | 28       | 169   | 0    |
| Turn Type               | Perm              | NA    |              | Perm  | NA    |      | Perm     | NA    |      | Perm     | NA    |      |
| Protected Phases        |                   | 6     |              |       | 2     |      |          | 4     |      |          | 8     |      |
| Permitted Phases        | 6                 |       |              | 2     |       |      | 4        |       |      | 8        |       |      |
| Detector Phase          | 6                 | 6     |              | 2     | 2     |      | 4        | 4     |      | 8        | 8     |      |
| Switch Phase            |                   |       |              |       |       |      |          |       |      |          |       |      |
| Minimum Initial (s)     | 7.0               | 7.0   |              | 7.0   | 7.0   |      | 7.0      | 7.0   |      | 7.0      | 7.0   |      |
| Minimum Split (s)       | 17.0              | 17.0  |              | 17.0  | 17.0  |      | 17.0     | 17.0  |      | 17.0     | 17.0  |      |
| Total Split (s)         | 21.0              | 21.0  |              | 21.0  | 21.0  |      | 31.0     | 31.0  |      | 31.0     | 31.0  |      |
| Total Split (%)         | 35.0%             | 35.0% |              | 35.0% | 35.0% |      | 51.7%    | 51.7% |      | 51.7%    | 51.7% |      |
| Yellow Time (s)         | 3.0               | 3.0   |              | 3.0   | 3.0   |      | 3.0      | 3.0   |      | 3.0      | 3.0   |      |
| All-Red Time (s)        | 1.0               | 1.0   |              | 1.0   | 1.0   |      | 1.0      | 1.0   |      | 1.0      | 1.0   |      |
| Lost Time Adjust (s)    |                   | 0.0   |              | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     |                   | 4.0   |              | 4.0   | 4.0   |      | 4.0      | 4.0   |      | 4.0      | 4.0   |      |
| Lead/Lag                |                   |       |              |       |       |      |          |       |      |          |       |      |
| Lead-Lag Optimize?      |                   |       |              |       |       |      |          |       |      |          |       |      |
| Recall Mode             | C-Min             | C-Min |              | C-Min | C-Min |      | None     | None  |      | None     | None  |      |
| Act Effct Green (s)     |                   | 21.8  |              | 21.8  | 21.8  |      | 27.0     | 27.0  |      | 27.0     | 27.0  |      |
| Actuated g/C Ratio      |                   | 0.36  |              | 0.36  | 0.36  |      | 0.45     | 0.45  |      | 0.45     | 0.45  |      |
| v/c Ratio               |                   | 0.26  |              | 0.08  | 0.97  |      | 0.37     | 1.04  |      | 0.24     | 0.23  |      |
| Control Delay           |                   | 18.4  |              | 22.0  | 54.7  |      | 13.9     | 64.2  |      | 16.9     | 11.2  |      |
| Queue Delay             |                   | 0.0   |              | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Delay             |                   | 18.4  |              | 22.0  | 54.7  |      | 13.9     | 64.2  |      | 16.9     | 11.2  |      |
|                         |                   | 10.4  |              | 22.0  | 57.7  |      | 13.7     | 07.2  |      | 10.7     | 11.4  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10       |
|-------------------------|------|-----------|
| Lane Configurations     |      |           |
| Traffic Volume (vph)    |      |           |
| Future Volume (vph)     |      |           |
| Ideal Flow (vphpl)      |      |           |
| Lane Width (ft)         |      |           |
| Storage Length (ft)     |      |           |
| Storage Lanes           |      |           |
| Taper Length (ft)       |      |           |
| Lane Util. Factor       |      |           |
| Ped Bike Factor         |      |           |
| Frt                     |      |           |
|                         |      |           |
| Flt Protected           |      |           |
| Satd. Flow (prot)       |      |           |
| Flt Permitted           |      |           |
| Satd. Flow (perm)       |      |           |
| Right Turn on Red       |      |           |
| Satd. Flow (RTOR)       |      |           |
| Link Speed (mph)        |      |           |
| Link Distance (ft)      |      |           |
| Travel Time (s)         |      |           |
| Confl. Peds. (#/hr)     |      |           |
| Confl. Bikes (#/hr)     |      |           |
| Peak Hour Factor        |      |           |
| Heavy Vehicles (%)      |      |           |
| Adj. Flow (vph)         |      |           |
| Shared Lane Traffic (%) |      |           |
| Lane Group Flow (vph)   |      |           |
| Turn Type               |      |           |
| Protected Phases        | 9    | 10        |
| Permitted Phases        |      |           |
| Detector Phase          |      |           |
| Switch Phase            |      |           |
| Minimum Initial (s)     | 2.0  | 2.0       |
| Minimum Split (s)       | 4.0  | 4.0       |
| Total Split (s)         | 4.0  | 4.0       |
| Total Split (%)         | 7%   | 4.0<br>7% |
| Yellow Time (s)         | 2.0  | 2.0       |
| All-Red Time (s)        | 0.0  | 2.0       |
|                         | 0.0  | 0.0       |
| Lost Time Adjust (s)    |      |           |
| Total Lost Time (s)     |      |           |
| Lead/Lag                |      |           |
| Lead-Lag Optimize?      |      |           |
| Recall Mode             | None | None      |
| Act Effct Green (s)     |      |           |
| Actuated g/C Ratio      |      |           |
| v/c Ratio               |      |           |
| Control Delay           |      |           |
| Queue Delay             |      |           |
| Total Delay             |      |           |
|                         |      |           |

# New Haven Two-Way Study 24: York Street & Chapel Street

|                                                                 | . 🖈            | →      | $\mathbf{F}$ | 4          | +           | •          | 1    | Ť    | 1   | 1    | Ļ    | ~   |
|-----------------------------------------------------------------|----------------|--------|--------------|------------|-------------|------------|------|------|-----|------|------|-----|
| Lane Group                                                      | EBL            | EBT    | EBR          | WBL        | WBT         | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| LOS                                                             |                | В      |              | С          | D           |            | В    | E    |     | В    | В    |     |
| Approach Delay                                                  |                | 18.4   |              |            | 52.8        |            |      | 55.6 |     |      | 12.0 |     |
| Approach LOS                                                    |                | В      |              |            | D           |            |      | E    |     |      | В    |     |
| Stops (vph)                                                     |                | 58     |              | 25         | 326         |            | 85   | 523  |     | 20   | 91   |     |
| Fuel Used(gal)                                                  |                | 1      |              | 0          | 8           |            | 1    | 13   |     | 0    | 2    |     |
| CO Emissions (g/hr)                                             |                | 59     |              | 21         | 528         |            | 90   | 942  |     | 26   | 132  |     |
| NOx Emissions (g/hr)                                            |                | 12     |              | 4          | 103         |            | 18   | 183  |     | 5    | 26   |     |
| VOC Emissions (g/hr)                                            |                | 14     |              | 5          | 122         |            | 21   | 218  |     | 6    | 31   |     |
| Dilemma Vehicles (#)                                            |                | 0      |              | 0          | 0           |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)                                          |                | 19     |              | 11         | 217         |            | 38   | ~333 |     | 6    | 35   |     |
| Queue Length 95th (ft)                                          |                | 59     |              | m15        | m#313       |            | 68   | #432 |     | 24   | 70   |     |
| Internal Link Dist (ft)                                         |                | 431    |              |            | 339         |            |      | 435  |     |      | 818  |     |
| Turn Bay Length (ft)                                            |                |        |              | 50         |             |            | 50   |      |     | 50   |      |     |
| Base Capacity (vph)                                             |                | 318    |              | 449        | 586         |            | 457  | 787  |     | 115  | 726  |     |
| Starvation Cap Reductn                                          |                | 0      |              | 0          | 0           |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn                                           |                | 0      |              | 0          | 0           |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn                                             |                | 0      |              | 0          | 0           |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio                                               |                | 0.26   |              | 0.08       | 0.97        |            | 0.37 | 1.04 |     | 0.24 | 0.23 |     |
| Intersection Summary                                            |                |        |              |            |             |            |      |      |     |      |      |     |
|                                                                 | other          |        |              |            |             |            |      |      |     |      |      |     |
| Cycle Length: 60                                                |                |        |              |            |             |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60                                       |                |        |              |            |             |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced to                                   | phase 2:Wl     | BTL an | d 6:EBTl     | ., Start c | of Yellow   |            |      |      |     |      |      |     |
| Natural Cycle: 90                                               |                |        |              |            |             |            |      |      |     |      |      |     |
| Control Type: Actuated-Coor                                     | dinated        |        |              |            |             |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 1.04                                         |                |        |              |            |             |            |      |      |     |      |      |     |
| Intersection Signal Delay: 48                                   |                |        |              |            | ntersection |            |      |      |     |      |      |     |
| Intersection Capacity Utilizati                                 | ion 80.1%      |        |              | l          | CU Level    | of Service | e D  |      |     |      |      |     |
| Analysis Period (min) 15                                        |                |        |              |            |             |            |      |      |     |      |      |     |
| <ul> <li>Volume exceeds capacity</li> </ul>                     |                |        | cally infin  | ite.       |             |            |      |      |     |      |      |     |
| Queue shown is maximum after two cycles.                        |                |        |              |            |             |            |      |      |     |      |      |     |
| # 95th percentile volume exceeds capacity, queue may be longer. |                |        |              |            |             |            |      |      |     |      |      |     |
| Queue shown is maximum after two cycles.                        |                |        |              |            |             |            |      |      |     |      |      |     |
| m Volume for 95th percenti                                      | ile queue is r | netere | d by upst    | ream sig   | inal.       |            |      |      |     |      |      |     |

### Splits and Phases: 24: York Street & Chapel Street

| ₩ø9 | Ø2 (R)              |   | H <sub>Ø1</sub> | o≪ <b>1</b> ø4 |
|-----|---------------------|---|-----------------|----------------|
| 4 s | 21 s                |   | 4 s             | 31 s           |
|     | → <sub>Ø6 (R)</sub> | • |                 | Ø8             |
|     | 21 s                |   |                 | 31 s           |

### New Haven Two-Way Study 25: York Street & Crown Street

|                               | ≯          | -    | $\mathbf{r}$ | ∢    | ←        | •          | 1    | Ť     | 1    | 5    | Ļ     | ~    |
|-------------------------------|------------|------|--------------|------|----------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT  | EBR          | WBL  | WBT      | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            |      |              |      | 4        |            |      | ्र    |      |      | 4     |      |
| Traffic Volume (vph)          | 0          | 0    | 0            | 26   | 222      | 119        | 36   | 465   | 0    | 0    | 145   | 11   |
| Future Volume (vph)           | 0          | 0    | 0            | 26   | 222      | 119        | 36   | 465   | 0    | 0    | 145   | 11   |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900         | 1900 | 1900     | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00 | 1.00         | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |      |              |      |          |            |      |       |      |      |       |      |
| Frt                           |            |      |              |      | 0.956    |            |      |       |      |      | 0.990 |      |
| Flt Protected                 |            |      |              |      | 0.997    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (prot)             | 0          | 0    | 0            | 0    | 1732     | 0          | 0    | 1793  | 0    | 0    | 1783  | 0    |
| Flt Permitted                 |            |      |              |      | 0.997    |            |      | 0.996 |      |      |       |      |
| Satd. Flow (perm)             | 0          | 0    | 0            | 0    | 1732     | 0          | 0    | 1793  | 0    | 0    | 1783  | 0    |
| Link Speed (mph)              |            | 25   |              |      | 25       |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 502  |              |      | 419      |            |      | 405   |      |      | 515   |      |
| Travel Time (s)               |            | 13.7 |              |      | 11.4     |            |      | 11.0  |      |      | 14.0  |      |
| Confl. Peds. (#/hr)           |            |      |              | 17   |          | 17         | 74   |       |      |      |       | 74   |
| Confl. Bikes (#/hr)           |            |      |              |      |          | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.92       | 0.92 | 0.92         | 0.78 | 0.78     | 0.78       | 0.86 | 0.86  | 0.86 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)            | 2%         | 2%   | 2%           | 2%   | 1%       | 1%         | 2%   | 2%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 0          | 0    | 0            | 33   | 285      | 153        | 42   | 541   | 0    | 0    | 158   | 12   |
| Shared Lane Traffic (%)       |            |      |              |      |          |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 0    | 0            | 0    | 471      | 0          | 0    | 583   | 0    | 0    | 170   | 0    |
| Sign Control                  |            | Stop |              |      | Stop     |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |      |              |      |          |            |      |       |      |      |       |      |
| Area Type:                    | Other      |      |              |      |          |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |      |              |      |          |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 70.3% |      |              | IC   | CU Level | of Service | e C  |       |      |      |       |      |
| Analysis Period (min) 15      |            |      |              |      |          |            |      |       |      |      |       |      |

# Intersection Delay, s/veh 32.9 Intersection LOS D

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      |      |      |      | 4    |      |      | र्भ  |      |      | ef 👘 |      |
| Traffic Vol, veh/h         | 0    | 0    | 0    | 26   | 222  | 119  | 36   | 465  | 0    | 0    | 145  | 11   |
| Future Vol, veh/h          | 0    | 0    | 0    | 26   | 222  | 119  | 36   | 465  | 0    | 0    | 145  | 11   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.78 | 0.78 | 0.78 | 0.86 | 0.86 | 0.86 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 1    | 1    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 0    | 0    | 0    | 33   | 285  | 153  | 42   | 541  | 0    | 0    | 158  | 12   |
| Number of Lanes            | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   |      |      |      | WB   |      |      | NB   |      |      |      | SB   |      |
| Opposing Approach          |      |      |      |      |      |      | SB   |      |      |      | NB   |      |
| Opposing Lanes             |      |      |      | 0    |      |      | 1    |      |      |      | 1    |      |
| Conflicting Approach Left  |      |      |      | NB   |      |      |      |      |      |      | WB   |      |
| Conflicting Lanes Left     |      |      |      | 1    |      |      | 0    |      |      |      | 1    |      |
| Conflicting Approach Right |      |      |      | SB   |      |      | WB   |      |      |      |      |      |
| Conflicting Lanes Right    |      |      |      | 1    |      |      | 1    |      |      |      | 0    |      |
| HCM Control Delay          |      |      |      | 25.9 |      |      | 44.5 |      |      |      | 12.3 |      |
| HCM LOS                    |      |      |      | D    |      |      | E    |      |      |      | В    |      |

| Lane                   | NBLn1 | WBLn1 | SBLn1 |
|------------------------|-------|-------|-------|
| Vol Left, %            | 7%    | 7%    | 0%    |
| Vol Thru, %            | 93%   | 60%   | 93%   |
| Vol Right, %           | 0%    | 32%   | 7%    |
| Sign Control           | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 501   | 367   | 156   |
| LT Vol                 | 36    | 26    | 0     |
| Through Vol            | 465   | 222   | 145   |
| RT Vol                 | 0     | 119   | 11    |
| Lane Flow Rate         | 583   | 471   | 170   |
| Geometry Grp           | 1     | 1     | 1     |
| Degree of Util (X)     | 0.928 | 0.768 | 0.305 |
| Departure Headway (Hd) | 5.735 | 5.877 | 6.483 |
| Convergence, Y/N       | Yes   | Yes   | Yes   |
| Сар                    | 629   | 612   | 558   |
| Service Time           | 3.818 | 3.965 | 4.483 |
| HCM Lane V/C Ratio     | 0.927 | 0.77  | 0.305 |
| HCM Control Delay      | 44.5  | 25.9  | 12.3  |
| HCM Lane LOS           | E     | D     | В     |
| HCM 95th-tile Q        | 12.2  | 7.1   | 1.3   |

# New Haven Two-Way Study 26: York Street & George Street

|                         | ٦         | -         |      | ~        | +        | •    | •    | t         | *     | 1        | Ţ                  | ~    |
|-------------------------|-----------|-----------|------|----------|----------|------|------|-----------|-------|----------|--------------------|------|
| Lane Group              | EBL       | EBT       | EBR  | •<br>WBL | WBT      | WBR  | NBL  | NBT       | NBR   | SBL      | •<br>SBT           | SBR  |
| Lane Configurations     | <u> </u>  | 1         | LDIX | ndL      | 4        | WDR  | NDL  | <u> </u>  | 101   |          | <u>اردن</u><br>الم | ODR  |
| Traffic Volume (vph)    | 170       | 418       | 26   | 52       | 0        | 52   | 0    | 410       | 158   | 26       | 145                | 0    |
| Future Volume (vph)     | 170       | 418       | 26   | 52       | 0        | 52   | 0    | 410       | 158   | 26       | 145                | 0    |
| Ideal Flow (vphpl)      | 1900      | 1900      | 1900 | 1900     | 1900     | 1900 | 1900 | 1900      | 1900  | 1900     | 1900               | 1900 |
| Storage Length (ft)     | 0         | 1700      | 0    | 0        | 1700     | 0    | 0    | 1700      | 100   | 0        | 1700               | 0    |
| Storage Lanes           | 1         |           | 0    | 0        |          | 0    | 0    |           | 1     | 0        |                    | 0    |
| Taper Length (ft)       | 0         |           | Ŭ    | 0        |          | •    | 0    |           | •     | 0        |                    |      |
| Lane Util. Factor       | 1.00      | 1.00      | 1.00 | 1.00     | 1.00     | 1.00 | 1.00 | 1.00      | 1.00  | 1.00     | 1.00               | 1.00 |
| Ped Bike Factor         | 0.94      | 0.99      |      |          | 0.94     |      |      |           | 0.86  |          | 0.99               |      |
| Frt                     | 0171      | 0.991     |      |          | 0.932    |      |      |           | 0.850 |          | 0177               |      |
| Flt Protected           | 0.950     |           |      |          | 0.976    |      |      |           |       |          | 0.993              |      |
| Satd. Flow (prot)       | 1662      | 1792      | 0    | 0        | 1551     | 0    | 0    | 1818      | 1516  | 0        | 1788               | 0    |
| Flt Permitted           | 0.733     |           | -    | -        | 0.685    |      | -    |           |       | -        | 0.801              | _    |
| Satd. Flow (perm)       | 1204      | 1792      | 0    | 0        | 1078     | 0    | 0    | 1818      | 1309  | 0        | 1434               | 0    |
| Right Turn on Red       |           |           | No   |          |          | No   |      |           | No    | <u> </u> |                    | No   |
| Satd. Flow (RTOR)       |           |           |      |          |          |      |      |           |       |          |                    | 110  |
| Link Speed (mph)        |           | 25        |      |          | 25       |      |      | 25        |       |          | 25                 |      |
| Link Distance (ft)      |           | 504       |      |          | 403      |      |      | 370       |       |          | 405                |      |
| Travel Time (s)         |           | 13.7      |      |          | 11.0     |      |      | 10.1      |       |          | 11.0               |      |
| Confl. Peds. (#/hr)     | 33        | 10.7      | 33   | 33       | 11.0     | 33   | 48   | 10.1      | 48    | 48       | 11.0               | 48   |
| Confl. Bikes (#/hr)     |           |           | 10   | 00       |          | 10   |      |           | 10    |          |                    | 10   |
| Peak Hour Factor        | 0.86      | 0.86      | 0.86 | 0.92     | 0.92     | 0.92 | 0.87 | 0.87      | 0.87  | 0.92     | 0.92               | 0.92 |
| Heavy Vehicles (%)      | 5%        | 1%        | 0%   | 2%       | 2%       | 2%   | 2%   | 1%        | 3%    | 2%       | 2%                 | 2%   |
| Adj. Flow (vph)         | 198       | 486       | 30   | 57       | 0        | 57   | 0    | 471       | 182   | 28       | 158                | 0    |
| Shared Lane Traffic (%) | 170       | 100       | 00   | 0,       | Ŭ        | 07   | Ū    |           | 102   | 20       | 100                | Ŭ    |
| Lane Group Flow (vph)   | 198       | 516       | 0    | 0        | 114      | 0    | 0    | 471       | 182   | 0        | 186                | 0    |
| Turn Type               | Perm      | NA        | -    | Perm     | NA       |      | -    | NA        | Perm  | Perm     | NA                 | _    |
| Protected Phases        |           | 2         |      |          | 6        |      |      | 4         |       |          | 8                  |      |
| Permitted Phases        | 2         | _         |      | 6        |          |      |      | -         | 4     | 8        | -                  |      |
| Detector Phase          | 2         | 2         |      | 6        | 6        |      |      | 4         | 4     | 8        | 8                  |      |
| Switch Phase            |           | _         |      | -        |          |      |      | -         |       | -        | -                  |      |
| Minimum Initial (s)     | 7.0       | 7.0       |      | 7.0      | 7.0      |      |      | 7.0       | 7.0   | 7.0      | 7.0                |      |
| Minimum Split (s)       | 17.0      | 17.0      |      | 17.0     | 17.0     |      |      | 17.0      | 17.0  | 17.0     | 17.0               |      |
| Total Split (s)         | 22.0      | 22.0      |      | 22.0     | 22.0     |      |      | 30.0      | 30.0  | 30.0     | 30.0               |      |
| Total Split (%)         | 36.7%     | 36.7%     |      | 36.7%    | 36.7%    |      |      | 50.0%     | 50.0% | 50.0%    | 50.0%              |      |
| Yellow Time (s)         | 3.0       | 3.0       |      | 3.0      | 3.0      |      |      | 3.0       | 3.0   | 3.0      | 3.0                |      |
| All-Red Time (s)        | 1.0       | 1.0       |      | 1.0      | 1.0      |      |      | 1.0       | 1.0   | 1.0      | 1.0                |      |
| Lost Time Adjust (s)    | 0.0       | 0.0       |      | 1.0      | 0.0      |      |      | 0.0       | 0.0   | 1.0      | 0.0                |      |
| Total Lost Time (s)     | 4.0       | 4.0       |      |          | 4.0      |      |      | 4.0       | 4.0   |          | 4.0                |      |
| Lead/Lag                | 110       | 1.0       |      |          | 1.0      |      |      | 1.0       | 110   |          | 110                |      |
| Lead-Lag Optimize?      |           |           |      |          |          |      |      |           |       |          |                    |      |
| Recall Mode             | C-Min     | C-Min     |      | C-Min    | C-Min    |      |      | None      | None  | None     | None               |      |
| Act Effct Green (s)     | 30.4      | 30.4      |      |          | 30.4     |      |      | 20.0      | 20.0  | None     | 20.0               |      |
| Actuated g/C Ratio      | 0.51      | 0.51      |      |          | 0.51     |      |      | 0.33      | 0.33  |          | 0.33               |      |
| v/c Ratio               | 0.33      | 0.57      |      |          | 0.21     |      |      | 0.33      | 0.33  |          | 0.33               |      |
| Control Delay           | 13.8      | 18.2      |      |          | 6.5      |      |      | 26.7      | 17.2  |          | 16.5               |      |
| Queue Delay             | 0.0       | 0.0       |      |          | 0.0      |      |      | 0.1       | 0.0   |          | 0.0                |      |
| Total Delay             | 13.8      | 18.2      |      |          | 6.5      |      |      | 26.8      | 17.2  |          | 16.5               |      |
| LOS                     | 13.0<br>B | 10.2<br>B |      |          | 0.5<br>A |      |      | 20.0<br>C | В     |          | 10.5<br>B          |      |
| 203                     | D         | D         |      |          | А        |      |      | C         | D     |          | D                  |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9   | Ø10  |
|-------------------------|------|------|
| Lane Configurations     |      |      |
| Traffic Volume (vph)    |      |      |
| Future Volume (vph)     |      |      |
| Ideal Flow (vphpl)      |      |      |
| Storage Length (ft)     |      |      |
| Storage Lanes           |      |      |
| Taper Length (ft)       |      |      |
| Lane Util. Factor       |      |      |
| Ped Bike Factor         |      |      |
| Frt                     |      |      |
| Fit Protected           |      |      |
| Satd. Flow (prot)       |      |      |
| Flt Permitted           |      |      |
| Satd. Flow (perm)       |      |      |
|                         |      |      |
| Right Turn on Red       |      |      |
| Satd. Flow (RTOR)       |      |      |
| Link Speed (mph)        |      |      |
| Link Distance (ft)      |      |      |
| Travel Time (s)         |      |      |
| Confl. Peds. (#/hr)     |      |      |
| Confl. Bikes (#/hr)     |      |      |
| Peak Hour Factor        |      |      |
| Heavy Vehicles (%)      |      |      |
| Adj. Flow (vph)         |      |      |
| Shared Lane Traffic (%) |      |      |
| Lane Group Flow (vph)   |      |      |
| Turn Type               |      |      |
| Protected Phases        | 9    | 10   |
| Permitted Phases        |      |      |
| Detector Phase          |      |      |
| Switch Phase            |      |      |
| Minimum Initial (s)     | 2.0  | 2.0  |
| Minimum Split (s)       | 4.0  | 4.0  |
| Total Split (s)         | 4.0  | 4.0  |
| Total Split (%)         | 7%   | 7%   |
| Yellow Time (s)         | 2.0  | 2.0  |
| All-Red Time (s)        | 0.0  | 0.0  |
| Lost Time Adjust (s)    |      |      |
| Total Lost Time (s)     |      |      |
| Lead/Lag                |      |      |
| Lead-Lag Optimize?      |      |      |
| Recall Mode             | None | None |
| Act Effct Green (s)     | NUNC | None |
| Actuated g/C Ratio      |      |      |
| v/c Ratio               |      |      |
| Control Delay           |      |      |
|                         |      |      |
| Queue Delay             |      |      |
| Total Delay             |      |      |
| LOS                     |      |      |

# New Haven Two-Way Study 26: York Street & George Street

|                                   | ٦            | +         | $\mathbf{F}$ | 4          | +          | *          | •   | Ť    | 1    | 1   | Ļ    | ~   |
|-----------------------------------|--------------|-----------|--------------|------------|------------|------------|-----|------|------|-----|------|-----|
| Lane Group                        | EBL          | EBT       | EBR          | WBL        | WBT        | WBR        | NBL | NBT  | NBR  | SBL | SBT  | SBR |
| Approach Delay                    |              | 17.0      |              |            | 6.5        |            |     | 24.1 |      |     | 16.5 |     |
| Approach LOS                      |              | В         |              |            | А          |            |     | С    |      |     | В    |     |
| Stops (vph)                       | 110          | 269       |              |            | 39         |            |     | 342  | 110  |     | 118  |     |
| Fuel Used(gal)                    | 2            | 5         |              |            | 1          |            |     | 5    | 1    |     | 2    |     |
| CO Emissions (g/hr)               | 114          | 320       |              |            | 45         |            |     | 338  | 103  |     | 113  |     |
| NOx Emissions (g/hr)              | 22           | 62        |              |            | 9          |            |     | 66   | 20   |     | 22   |     |
| VOC Emissions (g/hr)              | 26           | 74        |              |            | 11         |            |     | 78   | 24   |     | 26   |     |
| Dilemma Vehicles (#)              | 0            | 0         |              |            | 0          |            |     | 0    | 0    |     | 0    |     |
| Queue Length 50th (ft)            | 37           | 112       |              |            | 9          |            |     | 149  | 50   |     | 50   |     |
| Queue Length 95th (ft)            | 111          | #329      |              |            | m29        |            |     | 197  | 78   |     | 82   |     |
| Internal Link Dist (ft)           |              | 424       |              |            | 323        |            |     | 290  |      |     | 325  |     |
| Turn Bay Length (ft)              |              |           |              |            |            |            |     |      | 100  |     |      |     |
| Base Capacity (vph)               | 609          | 906       |              |            | 545        |            |     | 787  | 567  |     | 621  |     |
| Starvation Cap Reductn            | 0            | 0         |              |            | 0          |            |     | 26   | 0    |     | 0    |     |
| Spillback Cap Reductn             | 0            | 0         |              |            | 0          |            |     | 0    | 0    |     | 0    |     |
| Storage Cap Reductn               | 0            | 0         |              |            | 0          |            |     | 0    | 0    |     | 0    |     |
| Reduced v/c Ratio                 | 0.33         | 0.57      |              |            | 0.21       |            |     | 0.62 | 0.32 |     | 0.30 |     |
| Intersection Summary              |              |           |              |            |            |            |     |      |      |     |      |     |
| Area Type:                        | Other        |           |              |            |            |            |     |      |      |     |      |     |
| Cycle Length: 60                  |              |           |              |            |            |            |     |      |      |     |      |     |
| Actuated Cycle Length: 60         |              |           |              |            |            |            |     |      |      |     |      |     |
| Offset: 9 (15%), Reference        | d to phase 2 | 2:EBTL ar | nd 6:WB      | TL, Start  | of Yellow  |            |     |      |      |     |      |     |
| Natural Cycle: 60                 |              |           |              |            |            |            |     |      |      |     |      |     |
| Control Type: Actuated-Co         | ordinated    |           |              |            |            |            |     |      |      |     |      |     |
| Maximum v/c Ratio: 0.78           |              |           |              |            |            |            |     |      |      |     |      |     |
| Intersection Signal Delay: 1      |              |           |              |            | tersection |            |     |      |      |     |      |     |
| Intersection Capacity Utilization | ation 74.3%  | 1         |              | IC         | CU Level   | of Service | e D |      |      |     |      |     |
| Analysis Period (min) 15          |              |           |              |            |            |            |     |      |      |     |      |     |
| # 95th percentile volume          |              |           | leue may     | i be longe | er.        |            |     |      |      |     |      |     |
| Queue shown is maxim              |              |           |              | -          |            |            |     |      |      |     |      |     |
| m Volume for 95th perce           | ntile queue  | is metere | d by upsi    | iream sig  | nal.       |            |     |      |      |     |      |     |

Splits and Phases: 26: York Street & George Street

| ₽₽ <sub>Ø9</sub> |             | • | ₩ø1 | <b>0 1</b> Ø4 |  |
|------------------|-------------|---|-----|---------------|--|
| 4 s              | 22 s        |   | 4s  | 30 s          |  |
|                  | €<br>Ø6 (R) | • |     | ▼Ø8           |  |
|                  | 22 s        |   |     | 30 s          |  |

|                              | -            | $\mathbf{F}$ | 1    | -    | 1        | 1            |
|------------------------------|--------------|--------------|------|------|----------|--------------|
| Lane Group                   | EBT          | EBR          | WBL  | WBT  | NBL      | NBR          |
| Lane Configurations          | <b>↑</b>     |              |      | •    | Y        |              |
| Traffic Volume (vph)         | 129          | 0            | 0    | 429  | 0        | 145          |
| Future Volume (vph)          | 129          | 0            | 0    | 429  | 0        | 145          |
| Ideal Flow (vphpl)           | 1900         | 1900         | 1900 | 1900 | 1900     | 1900         |
| Lane Util. Factor            | 1.00         | 1.00         | 1.00 | 1.00 | 1.00     | 1.00         |
| Ped Bike Factor              |              |              |      |      |          |              |
| Frt                          |              |              |      |      | 0.865    |              |
| Flt Protected                |              |              |      |      |          |              |
| Satd. Flow (prot)            | 1801         | 0            | 0    | 1717 | 1589     | 0            |
| Flt Permitted                |              |              |      |      |          |              |
| Satd. Flow (perm)            | 1801         | 0            | 0    | 1717 | 1589     | 0            |
| Link Speed (mph)             | 25           |              |      | 25   | 25       |              |
| Link Distance (ft)           | 419          |              |      | 502  | 522      |              |
| Travel Time (s)              | 11.4         |              |      | 13.7 | 14.2     |              |
| Confl. Peds. (#/hr)          |              |              |      |      | 173      | 173          |
| Confl. Bikes (#/hr)          |              | 15           |      |      |          | 15           |
| Peak Hour Factor             | 0.92         | 0.92         | 0.89 | 0.89 | 0.62     | 0.62         |
| Heavy Vehicles (%)           | 2%           | 2%           | 0%   | 7%   | 1%       | 0%           |
| Adj. Flow (vph)              | 140          | 0            | 0    | 482  | 0        | 234          |
| Shared Lane Traffic (%)      |              |              |      |      |          |              |
| Lane Group Flow (vph)        | 140          | 0            | 0    | 482  | 234      | 0            |
| Sign Control                 | Free         |              |      | Free | Stop     |              |
| Intersection Summary         |              |              |      |      |          |              |
| Area Type:                   | Other        |              |      |      |          |              |
| Control Type: Unsignalized   | d            |              |      |      |          |              |
| Intersection Capacity Utiliz | zation 45.7% |              |      | IC   | CU Level | of Service A |
| Analysis Period (min) 15     |              |              |      |      |          |              |

Analysis Period (min) 15

| Intersection           |          |      |      |          |      |      |
|------------------------|----------|------|------|----------|------|------|
| Int Delay, s/veh       | 3.8      |      |      |          |      |      |
| Movement               | EBT      | EBR  | WBL  | WBT      | NBL  | NBR  |
| Lane Configurations    | <b>↑</b> |      |      | <b>↑</b> | ۰¥   |      |
| Traffic Vol, veh/h     | 129      | 0    | 0    | 429      | 0    | 145  |
| Future Vol, veh/h      | 129      | 0    | 0    | 429      | 0    | 145  |
| Conflicting Peds, #/hr | 0        | 0    | 0    | 0        | 173  | 173  |
| Sign Control           | Free     | Free | Free | Free     | Stop | Stop |
| RT Channelized         | -        | None | -    | None     | -    | None |
| Storage Length         | -        | -    | -    | -        | 0    | -    |
| Veh in Median Storage, | # 0      | -    | -    | 0        | 0    | -    |
| Grade, %               | 0        | -    | -    | 0        | 0    | -    |
| Peak Hour Factor       | 92       | 92   | 89   | 89       | 62   | 62   |
| Heavy Vehicles, %      | 2        | 2    | 0    | 7        | 1    | 0    |
| Mvmt Flow              | 140      | 0    | 0    | 482      | 0    | 234  |

| Major/Minor          | Major1 | Ma | ajor2 |   | Minor1 |     |  |
|----------------------|--------|----|-------|---|--------|-----|--|
| Conflicting Flow All | 0      | -  | -     | - | 795    | 313 |  |
| Stage 1              | -      | -  | -     | - | 140    | -   |  |
| Stage 2              | -      | -  | -     | - | 655    | -   |  |
| Critical Hdwy        | -      | -  | -     | - | 6.41   | 6.2 |  |
| Critical Hdwy Stg 1  | -      | -  | -     | - | 5.41   | -   |  |
| Critical Hdwy Stg 2  | -      | -  | -     | - | 5.41   | -   |  |
| Follow-up Hdwy       | -      | -  | -     | - | 3.509  | 3.3 |  |
| Pot Cap-1 Maneuver   | -      | 0  | 0     | - | 358    | 732 |  |
| Stage 1              | -      | 0  | 0     | - | 007    | -   |  |
| Stage 2              | -      | 0  | 0     | - | 519    | -   |  |
| Platoon blocked, %   | -      |    |       | - |        |     |  |
| Mov Cap-1 Maneuve    |        | -  | -     | - | 311    | 635 |  |
| Mov Cap-2 Maneuve    | r -    | -  | -     | - | 011    | -   |  |
| Stage 1              | -      | -  | -     | - | 889    | -   |  |
| Stage 2              | -      | -  | -     | - | 450    | -   |  |
|                      |        |    |       |   |        |     |  |
| Approach             | EB     |    | WB    |   | NB     |     |  |
| HCM Control Delay,   | s 0    |    | 0     |   | 13.9   |     |  |
| HCM LOS              |        |    |       |   | В      |     |  |
|                      |        |    |       |   |        |     |  |

| Minor Lane/Major Mvmt | NBLn1 | EBT | WBT |
|-----------------------|-------|-----|-----|
| Capacity (veh/h)      | 635   | -   | -   |
| HCM Lane V/C Ratio    | 0.368 | -   | -   |
| HCM Control Delay (s) | 13.9  | -   | -   |
| HCM Lane LOS          | В     | -   | -   |
| HCM 95th %tile Q(veh) | 1.7   | -   | -   |

# New Haven Two-Way StudyFutu32: 340 George Street Garage/High Street & George Street

Future Volumes under 2-way ScenariotreetTiming Plan: EVENING PEAK HOUR

|                               | ۶          | -     | $\mathbf{F}$ | •    | -          | *          | 1    | Ť     | 1    | 1    | ţ     | ~    |
|-------------------------------|------------|-------|--------------|------|------------|------------|------|-------|------|------|-------|------|
| Lane Group                    | EBL        | EBT   | EBR          | WBL  | WBT        | WBR        | NBL  | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations           |            | \$    |              |      | \$         |            |      | \$    |      |      | \$    |      |
| Traffic Volume (vph)          | 93         | 481   | 5            | 5    | 207        | 26         | 26   | 11    | 52   | 52   | 11    | 26   |
| Future Volume (vph)           | 93         | 481   | 5            | 5    | 207        | 26         | 26   | 11    | 52   | 52   | 11    | 26   |
| Ideal Flow (vphpl)            | 1900       | 1900  | 1900         | 1900 | 1900       | 1900       | 1900 | 1900  | 1900 | 1900 | 1900  | 1900 |
| Lane Util. Factor             | 1.00       | 1.00  | 1.00         | 1.00 | 1.00       | 1.00       | 1.00 | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor               |            |       |              |      |            |            |      |       |      |      |       |      |
| Frt                           |            | 0.999 |              |      | 0.985      |            |      | 0.921 |      |      | 0.960 |      |
| Flt Protected                 |            | 0.992 |              |      | 0.999      |            |      | 0.985 |      |      | 0.972 |      |
| Satd. Flow (prot)             | 0          | 1787  | 0            | 0    | 1772       | 0          | 0    | 1634  | 0    | 0    | 1680  | 0    |
| Flt Permitted                 |            | 0.992 |              |      | 0.999      |            |      | 0.985 |      |      | 0.972 |      |
| Satd. Flow (perm)             | 0          | 1787  | 0            | 0    | 1772       | 0          | 0    | 1634  | 0    | 0    | 1680  | 0    |
| Link Speed (mph)              |            | 25    |              |      | 25         |            |      | 25    |      |      | 25    |      |
| Link Distance (ft)            |            | 403   |              |      | 487        |            |      | 120   |      |      | 398   |      |
| Travel Time (s)               |            | 11.0  |              |      | 13.3       |            |      | 3.3   |      |      | 10.9  |      |
| Confl. Peds. (#/hr)           | 25         |       | 64           | 64   |            | 25         | 14   |       | 14   | 14   |       | 14   |
| Confl. Bikes (#/hr)           |            |       | 10           |      |            | 10         |      |       | 10   |      |       | 10   |
| Peak Hour Factor              | 0.81       | 0.81  | 0.81         | 0.95 | 0.88       | 0.88       | 0.64 | 0.64  | 0.64 | 0.76 | 0.76  | 0.76 |
| Heavy Vehicles (%)            | 1%         | 2%    | 2%           | 2%   | 2%         | 2%         | 2%   | 2%    | 2%   | 2%   | 2%    | 2%   |
| Adj. Flow (vph)               | 115        | 594   | 6            | 5    | 235        | 30         | 41   | 17    | 81   | 68   | 14    | 34   |
| Shared Lane Traffic (%)       |            |       |              |      |            |            |      |       |      |      |       |      |
| Lane Group Flow (vph)         | 0          | 715   | 0            | 0    | 270        | 0          | 0    | 139   | 0    | 0    | 116   | 0    |
| Sign Control                  |            | Free  |              |      | Free       |            |      | Stop  |      |      | Stop  |      |
| Intersection Summary          |            |       |              |      |            |            |      |       |      |      |       |      |
| Area Type:                    | Other      |       |              |      |            |            |      |       |      |      |       |      |
| Control Type: Unsignalized    |            |       |              |      |            |            |      |       |      |      |       |      |
| Intersection Capacity Utiliza | tion 65.2% | )     |              | IC   | CU Level o | of Service | С    |       |      |      |       |      |
| Analysis Period (min) 15      |            |       |              |      |            |            |      |       |      |      |       |      |

### Intersection

Int Delay, s/veh

13.9

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h     | 93   | 481  | 5    | 5    | 207  | 26   | 26   | 11   | 52   | 52   | 11   | 26   |  |
| Future Vol, veh/h      | 93   | 481  | 5    | 5    | 207  | 26   | 26   | 11   | 52   | 52   | 11   | 26   |  |
| Conflicting Peds, #/hr | 25   | 0    | 64   | 64   | 0    | 25   | 14   | 0    | 14   | 14   | 0    | 14   |  |
| Sign Control           | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |  |
| Veh in Median Storage  | ,# - | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 81   | 81   | 81   | 95   | 88   | 88   | 64   | 64   | 64   | 76   | 76   | 76   |  |
| Heavy Vehicles, %      | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 115  | 594  | 6    | 5    | 235  | 30   | 41   | 17   | 81   | 68   | 14   | 34   |  |

| Major/Minor          | Major1 |      | Ν   | /lajor2 |     |     | Minor1    |       |       |           | Minor2 | Minor2    |
|----------------------|--------|------|-----|---------|-----|-----|-----------|-------|-------|-----------|--------|-----------|
| Conflicting Flow All | 290    | 0    | 0   | 664     | 0   | 0   | 1189      | 1191  | 675   |           | 1175   | 1175 1179 |
| Stage 1              | -      | -    | -   | -       | -   | -   | 891       | 891   | -     |           | 285    | 285 285   |
| Stage 2              | -      | -    | -   | -       | -   | -   | 298       | 300   | -     |           | 890    | 890 894   |
| Critical Hdwy        | 4.11   | -    | -   | 4.12    | -   | -   | 7.12      | 6.52  | 6.22  |           | 7.12   | 7.12 6.52 |
| Critical Hdwy Stg 1  | -      | -    | -   | -       | -   | -   | 6.12      | 5.52  | -     | (         | 6.12   | 6.12 5.52 |
| Critical Hdwy Stg 2  | -      | -    | -   | -       | -   | -   | 6.12      | 5.52  | -     | 6         | 5.12   | 5.12 5.52 |
| Follow-up Hdwy       | 2.209  | -    | -   | 2.218   | -   | -   | 3.518     | 4.018 | 3.318 | 3.5       | 18     | 18 4.018  |
| Pot Cap-1 Maneuver   | 1278   | -    | -   | 925     | -   | -   | 165       | 187   | 454   | 16        | 8      | 68 190    |
| Stage 1              | -      | -    | -   | -       | -   | -   | 337       | 361   | -     | 722       |        | 676       |
| Stage 2              | -      | -    | -   | -       | -   | -   | 711       | 666   | -     | 337       |        | 360       |
| Platoon blocked, %   |        | -    | -   |         | -   | -   |           |       |       |           |        |           |
| Mov Cap-1 Maneuver   | 1254   | -    | -   | 880     | -   | -   | 122       | 149   | 427   | 107       |        | 152       |
| Mov Cap-2 Maneuver   |        | -    | -   | -       | -   | -   | 122       | 149   | -     | 107       |        | 152       |
| Stage 1              | -      | -    | -   | -       | -   | -   | 276       | 296   | -     | 611       |        | 658       |
| Stage 2              | -      | -    | -   | -       | -   | -   | 651       | 649   | -     | 219       |        | 295       |
| 5                    |        |      |     |         |     |     |           |       |       |           |        |           |
| Approach             | EB     |      |     | WB      |     |     | NB        |       |       | SB        |        |           |
| HCM Control Delay, s |        |      |     | 0.2     |     |     | 46.7      |       |       | 83.9      | _      | _         |
| HCM LOS              | о г.J  |      |     | 0.2     |     |     | 40.7<br>E |       |       | 03.9<br>F |        |           |
|                      |        |      |     |         |     |     | L         |       |       | 1         |        |           |
|                      |        |      |     |         |     |     |           |       |       |           |        |           |
| Minor Lane/Major Mvr | mt NB  | BLn1 | EBL | EBT     | EBR | WBL | WBT       | WBR   | SBLn1 |           |        |           |

| IVITION LATE/IVIAJON IVIVITIL | NDLIT | LDL   | LDT | LDK | VVDL  | VVDI | WDR . | DLIII |
|-------------------------------|-------|-------|-----|-----|-------|------|-------|-------|
| Capacity (veh/h)              | 218   | 1254  | -   | -   | 880   | -    | -     | 150   |
| HCM Lane V/C Ratio            | 0.638 | 0.092 | -   | -   | 0.006 | -    | -     | 0.781 |
| HCM Control Delay (s)         | 46.7  | 8.2   | 0   | -   | 9.1   | 0    | -     | 83.9  |
| HCM Lane LOS                  | E     | А     | А   | -   | А     | А    | -     | F     |
| HCM 95th %tile Q(veh)         | 3.8   | 0.3   | -   | -   | 0     | -    | -     | 4.9   |

### New Haven Two-Way Study 71: York Street & North Frontage Road

| - † > > + -<               |
|----------------------------|
| L NBT NBR SBL SBT SBR      |
| 4 Þ                        |
| 2 269 0 0 196 26           |
| 2 269 0 0 196 26           |
| 0 1900 1900 1900 1900 1900 |
| 0 1.00 1.00 1.00 1.00 1.00 |
| 1.00                       |
| 0.984                      |
| 0.990                      |
| 0 1716 0 0 1771 0          |
| 0.679                      |
| 0 1177 0 0 1771 0          |
| No No                      |
|                            |
| 25 25                      |
| 252 370                    |
| 6.9 10.1                   |
| 10 10                      |
| 6 0.86 0.86 0.92 0.92 0.92 |
| 6 7% 2% 2% 2% 0%           |
| 4 313 0 0 213 28           |
|                            |
| 0 397 0 0 241 0            |
| P NA NA                    |
| 7 78 8                     |
| 8                          |
| 8 78 8                     |
|                            |
| 0 12.0                     |
| 0 16.0                     |
| 0 20.0                     |
| 6 22.2%                    |
|                            |
|                            |
|                            |
|                            |
|                            |
| <b>J</b>                   |
|                            |
|                            |
|                            |
| 0.88 0.85                  |
| 48.6 62.8                  |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
| 48.6 62.8                  |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø3   |
|-------------------------|------|
| Lane Configurations     |      |
| Traffic Volume (vph)    |      |
| Future Volume (vph)     |      |
| Ideal Flow (vphpl)      |      |
| Lane Util. Factor       |      |
| Ped Bike Factor         |      |
| Frt                     |      |
|                         |      |
| Flt Protected           |      |
| Satd. Flow (prot)       |      |
| Flt Permitted           |      |
| Satd. Flow (perm)       |      |
| Right Turn on Red       |      |
| Satd. Flow (RTOR)       |      |
| Link Speed (mph)        |      |
| Link Distance (ft)      |      |
| Travel Time (s)         |      |
| Confl. Bikes (#/hr)     |      |
| Peak Hour Factor        |      |
| Heavy Vehicles (%)      |      |
| Adj. Flow (vph)         |      |
| Shared Lane Traffic (%) |      |
| Lane Group Flow (vph)   |      |
| Turn Type               |      |
| Protected Phases        | 3    |
| Permitted Phases        |      |
| Detector Phase          |      |
| Switch Phase            |      |
| Minimum Initial (s)     | 1.0  |
| Minimum Split (s)       | 24.0 |
| Total Split (s)         | 24.0 |
| Total Split (%)         | 27%  |
| Yellow Time (s)         | 4.0  |
| All-Red Time (s)        | 4.0  |
|                         | 0.0  |
| Lost Time Adjust (s)    |      |
| Total Lost Time (s)     |      |
| Lead/Lag                |      |
| Lead-Lag Optimize?      | Nerr |
| Recall Mode             | None |
| Act Effct Green (s)     |      |
| Actuated g/C Ratio      |      |
| v/c Ratio               |      |
| Control Delay           |      |
| Queue Delay             |      |
| Total Delay             |      |
| LOS                     |      |
| Approach Delay          |      |
| Approach LOS            |      |
| Stops (vph)             |      |
| Fuel Used(gal)          |      |
|                         |      |

New Haven Two-Way Study 71: York Street & North Frontage Road

|                                            | ٦           | -         | $\mathbf{F}$ | 4        | +           | •          | •   | Ť    | *   | 1   | ţ    | ~   |
|--------------------------------------------|-------------|-----------|--------------|----------|-------------|------------|-----|------|-----|-----|------|-----|
| Lane Group                                 | EBL         | EBT       | EBR          | WBL      | WBT         | WBR        | NBL | NBT  | NBR | SBL | SBT  | SBR |
| CO Emissions (g/hr)                        |             |           |              |          | 2162        |            |     | 365  |     |     | 301  |     |
| NOx Emissions (g/hr)                       |             |           |              |          | 421         |            |     | 71   |     |     | 59   |     |
| VOC Emissions (g/hr)                       |             |           |              |          | 501         |            |     | 85   |     |     | 70   |     |
| Dilemma Vehicles (#)                       |             |           |              |          | 0           |            |     | 0    |     |     | 0    |     |
| Queue Length 50th (ft)                     |             |           |              |          | ~387        |            |     | 185  |     |     | 133  |     |
| Queue Length 95th (ft)                     |             |           |              |          | #485        |            |     | #303 |     |     | #246 |     |
| Internal Link Dist (ft)                    |             | 415       |              |          | 848         |            |     | 172  |     |     | 290  |     |
| Turn Bay Length (ft)                       |             |           |              |          |             |            |     |      |     |     |      |     |
| Base Capacity (vph)                        |             |           |              |          | 1579        |            |     | 470  |     |     | 314  |     |
| Starvation Cap Reductn                     |             |           |              |          | 0           |            |     | 5    |     |     | 0    |     |
| Spillback Cap Reductn                      |             |           |              |          | 0           |            |     | 0    |     |     | 0    |     |
| Storage Cap Reductn                        |             |           |              |          | 0           |            |     | 0    |     |     | 0    |     |
| Reduced v/c Ratio                          |             |           |              |          | 0.96        |            |     | 0.85 |     |     | 0.77 |     |
| Intersection Summary                       |             |           |              |          |             |            |     |      |     |     |      |     |
| 21                                         | Other       |           |              |          |             |            |     |      |     |     |      |     |
| Cycle Length: 90                           |             |           |              |          |             |            |     |      |     |     |      |     |
| Actuated Cycle Length: 90                  |             |           |              |          |             |            |     |      |     |     |      |     |
| Offset: 16 (18%), Reference                | d to phase  | 6:WBTL    | , Start of   | Yellow   |             |            |     |      |     |     |      |     |
| Natural Cycle: 90                          |             |           |              |          |             |            |     |      |     |     |      |     |
| Control Type: Actuated-Coor                | rdinated    |           |              |          |             |            |     |      |     |     |      |     |
| Maximum v/c Ratio: 0.96                    |             |           |              |          |             |            |     |      |     |     |      |     |
| Intersection Signal Delay: 50              |             |           |              |          | ntersection |            | -   |      |     |     |      |     |
| Intersection Capacity Utilizat             | tion /1.5%  |           |              | ](       | CU Level    | of Service | e C |      |     |     |      |     |
| Analysis Period (min) 15                   |             |           |              |          |             |            |     |      |     |     |      |     |
| <ul> <li>Volume exceeds capacit</li> </ul> |             |           | cally infir  | nite.    |             |            |     |      |     |     |      |     |
| Queue shown is maximu                      |             |           |              |          |             |            |     |      |     |     |      |     |
| # 95th percentile volume e                 |             |           | leue may     | be longe | er.         |            |     |      |     |     |      |     |
| Queue shown is maximul                     | m after two | o cycles. |              |          |             |            |     |      |     |     |      |     |
|                                            |             |           |              |          |             |            |     |      |     |     |      |     |

Splits and Phases: 71: York Street & North Frontage Road

| ₩<br>Ø6 (R) | ₩a   | <b>↑</b> <sub>Ø7</sub> | <b>∳</b> ¶ <sub>Ø8</sub> |  |
|-------------|------|------------------------|--------------------------|--|
| 30 s        | 24 s | 16 s                   | 20 s                     |  |

# New Haven Two-Way Study 74: College Street & George Street

|                         | ٦    | _ <b>→</b> | $\mathbf{r}$ | 4        | +         | ×    | 1    | 1    | 1    | 1      | ţ         | ~    |
|-------------------------|------|------------|--------------|----------|-----------|------|------|------|------|--------|-----------|------|
| Lane Group              | EBL  | EBT        | EBR          | WBL      | WBT       | WBR  | NBL  | NBT  | NBR  | SBL    | SBT       | SBR  |
| Lane Configurations     |      | 4          |              |          | र्स       |      |      |      |      |        | 4         |      |
| Traffic Volume (vph)    | 0    | 479        | 114          | 78       | 207       | 0    | 0    | 0    | 0    | 100    | 253       | 26   |
| Future Volume (vph)     | 0    | 479        | 114          | 78       | 207       | 0    | 0    | 0    | 0    | 100    | 253       | 26   |
| Ideal Flow (vphpl)      | 1900 | 1900       | 1900         | 1900     | 1900      | 1900 | 1900 | 1900 | 1900 | 1900   | 1900      | 1900 |
| Lane Util. Factor       | 1.00 | 1.00       | 1.00         | 1.00     | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00   | 1.00      | 1.00 |
| Ped Bike Factor         | 1.00 | 0.98       | 1.00         | 1.00     | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00   | 0.96      | 1.00 |
| Frt                     |      | 0.974      |              |          |           |      |      |      |      |        | 0.991     |      |
| Flt Protected           |      | 0.771      |              |          | 0.986     |      |      |      |      |        | 0.987     |      |
| Satd. Flow (prot)       | 0    | 1521       | 0            | 0        | 1598      | 0    | 0    | 0    | 0    | 0      | 1485      | 0    |
| Flt Permitted           | Ŭ    | 1021       | Ű            | Ŭ        | 0.498     | Ŭ    | Ű    | Ŭ    | Ū    | Ŭ      | 0.987     | Ŭ    |
| Satd. Flow (perm)       | 0    | 1521       | 0            | 0        | 807       | 0    | 0    | 0    | 0    | 0      | 1434      | 0    |
| Right Turn on Red       | U    | 1021       | No           | Ū        | 007       | No   | U    | U    | No   | Ū      | 1101      | No   |
| Satd. Flow (RTOR)       |      |            | NO           |          |           | NO   |      |      | 110  |        |           | 110  |
| Link Speed (mph)        |      | 25         |              |          | 25        |      |      | 25   |      |        | 25        |      |
| Link Distance (ft)      |      | 487        |              |          | 542       |      |      | 382  |      |        | 372       |      |
| Travel Time (s)         |      | 13.3       |              |          | 14.8      |      |      | 10.4 |      |        | 10.1      |      |
| Confl. Peds. (#/hr)     | 60   | 15.5       | 60           | 60       | 14.0      | 60   | 60   | 10.4 | 60   | 60     | 10.1      | 60   |
| Confl. Bikes (#/hr)     | 00   |            | 10           | 00       |           | 10   | 00   |      | 00   | 00     |           | 10   |
| Peak Hour Factor        | 0.88 | 0.88       | 0.88         | 0.92     | 0.92      | 0.92 | 0.92 | 0.92 | 0.92 | 0.94   | 0.94      | 0.94 |
| Heavy Vehicles (%)      | 2%   | 4%         | 4%           | 2%       | 2%        | 2%   | 2%   | 2%   | 2%   | 6%     | 9%        | 2%   |
| Adj. Flow (vph)         | 0    | 544        | 130          | 85       | 225       | 0    | 270  | 0    | 270  | 106    | 269       | 28   |
| Shared Lane Traffic (%) | 0    | 544        | 150          | 05       | 225       | 0    | 0    | 0    | 0    | 100    | 207       | 20   |
| Lane Group Flow (vph)   | 0    | 674        | 0            | 0        | 310       | 0    | 0    | 0    | 0    | 0      | 403       | 0    |
| Turn Type               | 0    | NA         | U            | Perm     | NA        | 0    | U    | 0    | 0    | Perm   | NA        | U    |
| Protected Phases        |      | 2          |              | 1 CIIII  | 6         |      |      |      |      | 1 CHII | 4         |      |
| Permitted Phases        |      | 2          |              | 6        | 0         |      |      |      |      | 4      | т         |      |
| Detector Phase          |      | 2          |              | 6        | 6         |      |      |      |      | 4      | 4         |      |
| Switch Phase            |      | 2          |              | 0        | 0         |      |      |      |      |        | т         |      |
| Minimum Initial (s)     |      | 7.0        |              | 7.0      | 7.0       |      |      |      |      | 7.0    | 7.0       |      |
| Minimum Split (s)       |      | 18.0       |              | 18.0     | 18.0      |      |      |      |      | 18.0   | 18.0      |      |
| Total Split (s)         |      | 30.0       |              | 30.0     | 30.0      |      |      |      |      | 22.0   | 22.0      |      |
| Total Split (%)         |      | 50.0%      |              | 50.0%    | 50.0%     |      |      |      |      | 36.7%  | 36.7%     |      |
| Yellow Time (s)         |      | 3.0        |              | 3.0      | 3.0       |      |      |      |      | 3.0    | 3.0       |      |
| All-Red Time (s)        |      | 1.0        |              | 1.0      | 1.0       |      |      |      |      | 1.0    | 1.0       |      |
| Lost Time Adjust (s)    |      | 0.0        |              | 1.0      | 0.0       |      |      |      |      | 1.0    | 0.0       |      |
| Total Lost Time (s)     |      | 4.0        |              |          | 4.0       |      |      |      |      |        | 4.0       |      |
| Lead/Lag                |      | т.0        |              |          | ч.0       |      |      |      |      |        | т.0       |      |
| Lead-Lag Optimize?      |      |            |              |          |           |      |      |      |      |        |           |      |
| Recall Mode             |      | C-Min      |              | C-Min    | C-Min     |      |      |      |      | None   | None      |      |
| Act Effct Green (s)     |      | 29.2       |              | C-IVIIII | 29.2      |      |      |      |      | None   | 18.0      |      |
| Actuated g/C Ratio      |      | 0.49       |              |          | 0.49      |      |      |      |      |        | 0.30      |      |
| v/c Ratio               |      | 0.47       |              |          | 0.49      |      |      |      |      |        | 0.94      |      |
| Control Delay           |      | 34.6       |              |          | 38.0      |      |      |      |      |        | 55.2      |      |
| Queue Delay             |      | 0.0        |              |          | 0.0       |      |      |      |      |        | 0.0       |      |
| Total Delay             |      | 34.6       |              |          | 38.0      |      |      |      |      |        | 55.2      |      |
| LOS                     |      | 34.0<br>C  |              |          | 38.0<br>D |      |      |      |      |        | 55.2<br>E |      |
| Approach Delay          |      | 34.6       |              |          | 38.0      |      |      |      |      |        | 55.2      |      |
|                         |      | 34.0<br>C  |              |          | 38.0<br>D |      |      |      |      |        | 55.2<br>E |      |
| Approach LOS            |      |            |              |          |           |      |      |      |      |        |           |      |
| Stops (vph)             |      | 414        |              |          | 204       |      |      |      |      |        | 308       |      |

Lanes, Volumes, Timings SLR

| Lane Group                         | Ø9        | Ø10       |
|------------------------------------|-----------|-----------|
| Lane Configurations                |           |           |
| Traffic Volume (vph)               |           |           |
| Future Volume (vph)                |           |           |
| Ideal Flow (vphpl)                 |           |           |
| Lane Util. Factor                  |           |           |
| Ped Bike Factor                    |           |           |
| Fred bike Factor                   |           |           |
| Fit Protected                      |           |           |
|                                    |           |           |
| Satd. Flow (prot)<br>Flt Permitted |           |           |
|                                    |           |           |
| Satd. Flow (perm)                  |           |           |
| Right Turn on Red                  |           |           |
| Satd. Flow (RTOR)                  |           |           |
| Link Speed (mph)                   |           |           |
| Link Distance (ft)                 |           |           |
| Travel Time (s)                    |           |           |
| Confl. Peds. (#/hr)                |           |           |
| Confl. Bikes (#/hr)                |           |           |
| Peak Hour Factor                   |           |           |
| Heavy Vehicles (%)                 |           |           |
| Adj. Flow (vph)                    |           |           |
| Shared Lane Traffic (%)            |           |           |
| Lane Group Flow (vph)              |           |           |
| Turn Type                          |           |           |
| Protected Phases                   | 9         | 10        |
| Permitted Phases                   |           | -         |
| Detector Phase                     |           |           |
| Switch Phase                       |           |           |
| Minimum Initial (s)                | 2.0       | 2.0       |
| Minimum Split (s)                  | 4.0       | 4.0       |
| Total Split (s)                    | 4.0       | 4.0       |
| Total Split (%)                    | 4.0<br>7% | 4.0<br>7% |
| Yellow Time (s)                    | 2.0       | 2.0       |
|                                    | 0.0       |           |
| All-Red Time (s)                   | 0.0       | 0.0       |
| Lost Time Adjust (s)               |           |           |
| Total Lost Time (s)                |           |           |
| Lead/Lag                           |           |           |
| Lead-Lag Optimize?                 | K I       | N         |
| Recall Mode                        | None      | None      |
| Act Effct Green (s)                |           |           |
| Actuated g/C Ratio                 |           |           |
| v/c Ratio                          |           |           |
| Control Delay                      |           |           |
| Queue Delay                        |           |           |
| Total Delay                        |           |           |
| LOS                                |           |           |
| Approach Delay                     |           |           |
| Approach LOS                       |           |           |
| Stops (vph)                        |           |           |
|                                    |           |           |

### New Haven Two-Way Study 74: College Street & George Street

|                                             | ۶           | -        | $\mathbf{F}$ | ∢           | +          | •          | •   | 1   | 1   | 1   | ţ    | ~   |
|---------------------------------------------|-------------|----------|--------------|-------------|------------|------------|-----|-----|-----|-----|------|-----|
| Lane Group                                  | EBL         | EBT      | EBR          | WBL         | WBT        | WBR        | NBL | NBT | NBR | SBL | SBT  | SBI |
| Fuel Used(gal)                              |             | 8        |              |             | 4          |            |     |     |     |     | 7    |     |
| CO Emissions (g/hr)                         |             | 575      |              |             | 301        |            |     |     |     |     | 464  |     |
| NOx Emissions (g/hr)                        |             | 112      |              |             | 59         |            |     |     |     |     | 90   |     |
| VOC Emissions (g/hr)                        |             | 133      |              |             | 70         |            |     |     |     |     | 108  |     |
| Dilemma Vehicles (#)                        |             | 0        |              |             | 0          |            |     |     |     |     | 0    |     |
| Queue Length 50th (ft)                      |             | ~224     |              |             | 94         |            |     |     |     |     | 140  |     |
| Queue Length 95th (ft)                      |             | #435     |              |             | #254       |            |     |     |     |     | #294 |     |
| Internal Link Dist (ft)                     |             | 407      |              |             | 462        |            |     | 302 |     |     | 292  |     |
| Turn Bay Length (ft)                        |             |          |              |             |            |            |     |     |     |     |      |     |
| Base Capacity (vph)                         |             | 741      |              |             | 393        |            |     |     |     |     | 430  |     |
| Starvation Cap Reductn                      |             | 0        |              |             | 0          |            |     |     |     |     | 0    |     |
| Spillback Cap Reductn                       |             | 0        |              |             | 0          |            |     |     |     |     | 0    |     |
| Storage Cap Reductn                         |             | 0        |              |             | 0          |            |     |     |     |     | 0    |     |
| Reduced v/c Ratio                           |             | 0.91     |              |             | 0.79       |            |     |     |     |     | 0.94 |     |
| Intersection Summary                        |             |          |              |             |            |            |     |     |     |     |      |     |
| Area Type: C                                | CBD         |          |              |             |            |            |     |     |     |     |      |     |
| Cycle Length: 60                            |             |          |              |             |            |            |     |     |     |     |      |     |
| Actuated Cycle Length: 60                   |             |          |              |             |            |            |     |     |     |     |      |     |
| Offset: 45 (75%), Referenced                | d to phase  | 2:EBT ar | nd 6:WB      | FL, Start ( | of Yellow  |            |     |     |     |     |      |     |
| Natural Cycle: 90                           |             |          |              |             |            |            |     |     |     |     |      |     |
| Control Type: Actuated-Coor                 | dinated     |          |              |             |            |            |     |     |     |     |      |     |
| Maximum v/c Ratio: 0.94                     |             |          |              |             |            |            |     |     |     |     |      |     |
| Intersection Signal Delay: 41               | .3          |          |              | In          | tersection | ו LOS: D   |     |     |     |     |      |     |
| Intersection Capacity Utilizat              | ion 93.1%   |          |              | IC          | U Level    | of Service | F   |     |     |     |      |     |
| Analysis Period (min) 15                    |             |          |              |             |            |            |     |     |     |     |      |     |
| <ul> <li>Volume exceeds capacity</li> </ul> |             |          | ally infin   | ite.        |            |            |     |     |     |     |      |     |
| Queue shown is maximur                      |             |          |              |             |            |            |     |     |     |     |      |     |
| # 95th percentile volume e                  |             |          | eue may      | be longe    | er.        |            |     |     |     |     |      |     |
| Queue shown is maximur                      | n after two | cycles.  |              |             |            |            |     |     |     |     |      |     |

Splits and Phases: 74: College Street & George Street

| ₽∎ <sub>Ø9</sub> | →ø2 (R)          | ≹∎ <sub>Ø1</sub> | Ø4   |
|------------------|------------------|------------------|------|
| 4 s              | 30 s             | 4 s              | 22 s |
|                  | ✓ Ø6 (R)<br>30 s |                  |      |

# New Haven Two-Way Study 78: Temple Street & George Street

| ·                       |       |       |              |       | _     |      |       |       |      |       |       |      |
|-------------------------|-------|-------|--------------|-------|-------|------|-------|-------|------|-------|-------|------|
|                         | •     | →     | $\mathbf{F}$ | 1     | -     | •    | 1     | Ť     | 1    | >     | Ŧ     | -    |
| Lane Group              | EBL   | EBT   | EBR          | WBL   | WBT   | WBR  | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     |       | 4     |              | ሻ     | el 👘  |      | ٦     | eî 👘  |      | ۲.    | ef 👘  |      |
| Traffic Volume (vph)    | 103   | 406   | 160          | 52    | 206   | 26   | 52    | 129   | 52   | 176   | 103   | 26   |
| Future Volume (vph)     | 103   | 406   | 160          | 52    | 206   | 26   | 52    | 129   | 52   | 176   | 103   | 26   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900         | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 0     |       | 0            | 150   |       | 0    | 75    |       | 0    | 75    |       | 0    |
| Storage Lanes           | 0     |       | 0            | 1     |       | 0    | 1     |       | 0    | 1     |       | 1    |
| Taper Length (ft)       | 0     |       |              | 25    |       |      | 25    |       |      | 25    |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.97  |              |       | 0.99  |      | 0.95  | 0.98  |      | 0.96  | 0.98  |      |
| Frt                     |       | 0.968 |              |       | 0.983 |      |       | 0.957 |      |       | 0.970 |      |
| Flt Protected           |       | 0.992 |              | 0.950 |       |      | 0.950 |       |      | 0.950 |       |      |
| Satd. Flow (prot)       | 0     | 1532  | 0            | 1540  | 1578  | 0    | 1540  | 1513  | 0    | 1510  | 1509  | 0    |
| Flt Permitted           |       | 0.905 |              | 0.308 |       |      | 0.663 |       |      | 0.584 |       |      |
| Satd. Flow (perm)       | 0     | 1390  | 0            | 499   | 1578  | 0    | 1026  | 1513  | 0    | 890   | 1509  | 0    |
| Right Turn on Red       |       |       | No           |       |       | No   |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |              |       |       |      |       |       |      |       |       |      |
| Link Speed (mph)        |       | 25    |              |       | 25    |      |       | 25    |      |       | 25    |      |
| Link Distance (ft)      |       | 542   |              |       | 404   |      |       | 250   |      |       | 403   |      |
| Travel Time (s)         |       | 14.8  |              |       | 11.0  |      |       | 6.8   |      |       | 11.0  |      |
| Confl. Peds. (#/hr)     | 26    |       | 26           | 26    |       | 26   | 26    |       | 26   | 26    |       | 26   |
| Confl. Bikes (#/hr)     |       |       | 10           |       |       | 10   |       |       | 10   |       |       | 10   |
| Peak Hour Factor        | 0.85  | 0.85  | 0.85         | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 | 0.87  | 0.87  | 0.87 |
| Heavy Vehicles (%)      | 2%    | 2%    | 0%           | 2%    | 2%    | 2%   | 2%    | 2%    | 2%   | 4%    | 5%    | 2%   |
| Adj. Flow (vph)         | 121   | 478   | 188          | 57    | 224   | 28   | 57    | 140   | 57   | 202   | 118   | 30   |
| Shared Lane Traffic (%) |       |       |              |       |       |      |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 0     | 787   | 0            | 57    | 252   | 0    | 57    | 197   | 0    | 202   | 148   | 0    |
| Turn Type               | Perm  | NA    |              | Perm  | NA    |      | Perm  | NA    |      | Perm  | NA    |      |
| Protected Phases        |       | 2     |              |       | 6     |      |       | 4     |      |       | 8     |      |
| Permitted Phases        | 2     |       |              | 6     |       |      | 4     |       |      | 8     |       |      |
| Detector Phase          | 2     | 2     |              | 6     | 6     |      | 4     | 4     |      | 8     | 8     |      |
| Switch Phase            |       |       |              |       |       |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |              | 7.0   | 7.0   |      | 7.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 18.0  | 18.0  |              | 18.0  | 18.0  |      | 18.0  | 18.0  |      | 18.0  | 18.0  |      |
| Total Split (s)         | 28.0  | 28.0  |              | 28.0  | 28.0  |      | 24.0  | 24.0  |      | 24.0  | 24.0  |      |
| Total Split (%)         | 46.7% | 46.7% |              | 46.7% | 46.7% |      | 40.0% | 40.0% |      | 40.0% | 40.0% |      |
| Yellow Time (s)         | 3.0   | 3.0   |              | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |              | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0   | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |              | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |              | 4.0   | 4.0   |      | 4.0   | 4.0   |      | 4.0   | 4.0   |      |
| Lead/Lag                |       |       |              |       |       |      |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       |       |              |       |       |      |       |       |      |       |       |      |
| Recall Mode             | C-Min | C-Min |              | C-Min | C-Min |      | None  | None  |      | None  | None  |      |
| Act Effct Green (s)     |       | 32.1  |              | 32.1  | 32.1  |      | 16.7  | 16.7  |      | 16.7  | 16.7  |      |
| Actuated g/C Ratio      |       | 0.54  |              | 0.54  | 0.54  |      | 0.28  | 0.28  |      | 0.28  | 0.28  |      |
| v/c Ratio               |       | 1.06  |              | 0.21  | 0.30  |      | 0.20  | 0.47  |      | 0.81  | 0.35  |      |
| Control Delay           |       | 60.2  |              | 13.7  | 11.4  |      | 16.8  | 20.8  |      | 46.2  | 18.6  |      |
| Queue Delay             |       | 0.0   |              | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0   | 0.0   |      |
| Total Delay             |       | 60.2  |              | 13.7  | 11.4  |      | 16.8  | 20.8  |      | 46.2  | 18.6  |      |
| LOS                     |       | E     |              | В     | В     |      | В     | С     |      | D     | В     |      |

Lanes, Volumes, Timings SLR

| Lane Group              | Ø9        | Ø10       |
|-------------------------|-----------|-----------|
| Lane Configurations     |           |           |
| Traffic Volume (vph)    |           |           |
| Future Volume (vph)     |           |           |
| Ideal Flow (vphpl)      |           |           |
| Storage Length (ft)     |           |           |
| Storage Lanes           |           |           |
| Taper Length (ft)       |           |           |
| Lane Util. Factor       |           |           |
| Ped Bike Factor         |           |           |
| Frt                     |           |           |
| Fit Protected           |           |           |
|                         |           |           |
| Satd. Flow (prot)       |           |           |
| Flt Permitted           |           |           |
| Satd. Flow (perm)       |           |           |
| Right Turn on Red       |           |           |
| Satd. Flow (RTOR)       |           |           |
| Link Speed (mph)        |           |           |
| Link Distance (ft)      |           |           |
| Travel Time (s)         |           |           |
| Confl. Peds. (#/hr)     |           |           |
| Confl. Bikes (#/hr)     |           |           |
| Peak Hour Factor        |           |           |
| Heavy Vehicles (%)      |           |           |
| Adj. Flow (vph)         |           |           |
| Shared Lane Traffic (%) |           |           |
| Lane Group Flow (vph)   |           |           |
| Turn Type               |           |           |
| Protected Phases        | 9         | 10        |
| Permitted Phases        |           |           |
| Detector Phase          |           |           |
| Switch Phase            |           |           |
| Minimum Initial (s)     | 2.0       | 2.0       |
| Minimum Split (s)       | 4.0       | 4.0       |
| Total Split (s)         | 4.0       | 4.0       |
|                         | 4.0<br>7% | 4.0<br>7% |
| Total Split (%)         |           |           |
| Yellow Time (s)         | 2.0       | 2.0       |
| All-Red Time (s)        | 0.0       | 0.0       |
| Lost Time Adjust (s)    |           |           |
| Total Lost Time (s)     |           |           |
| Lead/Lag                |           |           |
| Lead-Lag Optimize?      |           |           |
| Recall Mode             | None      | None      |
| Act Effct Green (s)     |           |           |
| Actuated g/C Ratio      |           |           |
| v/c Ratio               |           |           |
| Control Delay           |           |           |
| Queue Delay             |           |           |
| Total Delay             |           |           |
| LOS                     |           |           |
|                         |           |           |

### New Haven Two-Way Study 78: Temple Street & George Street

|                                            | ۶          | -         | $\mathbf{F}$ | ∢           | ←          | •          | 1    | Ť    | ۲   | 1    | ţ    | ~   |
|--------------------------------------------|------------|-----------|--------------|-------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                                 | EBL        | EBT       | EBR          | WBL         | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBI |
| Approach Delay                             |            | 60.2      |              |             | 11.8       |            |      | 19.9 |     |      | 34.5 |     |
| Approach LOS                               |            | E         |              |             | В          |            |      | В    |     |      | С    |     |
| Stops (vph)                                |            | 286       |              | 36          | 136        |            | 39   | 140  |     | 149  | 94   |     |
| Fuel Used(gal)                             |            | 12        |              | 0           | 2          |            | 1    | 2    |     | 3    | 1    |     |
| CO Emissions (g/hr)                        |            | 866       |              | 32          | 130        |            | 35   | 134  |     | 198  | 90   |     |
| NOx Emissions (g/hr)                       |            | 168       |              | 6           | 25         |            | 7    | 26   |     | 38   | 18   |     |
| VOC Emissions (g/hr)                       |            | 201       |              | 7           | 30         |            | 8    | 31   |     | 46   | 21   |     |
| Dilemma Vehicles (#)                       |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)                     |            | ~78       |              | 9           | 43         |            | 15   | 56   |     | 64   | 40   |     |
| Queue Length 95th (ft)                     |            | m#462     |              | 40          | 115        |            | 38   | 103  |     | #144 | 76   |     |
| Internal Link Dist (ft)                    |            | 462       |              |             | 324        |            |      | 170  |     |      | 323  |     |
| Turn Bay Length (ft)                       |            |           |              | 150         |            |            | 75   |      |     | 75   |      |     |
| Base Capacity (vph)                        |            | 742       |              | 266         | 843        |            | 342  | 504  |     | 296  | 503  |     |
| Starvation Cap Reductn                     |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn                      |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Storage Cap Reductn                        |            | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio                          |            | 1.06      |              | 0.21        | 0.30       |            | 0.17 | 0.39 |     | 0.68 | 0.29 |     |
| Intersection Summary                       |            |           |              |             |            |            |      |      |     |      |      |     |
| JI I JI I                                  | CBD        |           |              |             |            |            |      |      |     |      |      |     |
| Cycle Length: 60                           |            |           |              |             |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 60                  |            |           |              |             |            |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced t               | o phase 2: | EBTL and  | d 6:WBTI     | L, Start of | Yellow     |            |      |      |     |      |      |     |
| Natural Cycle: 90                          |            |           |              |             |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Cool                | rdinated   |           |              |             |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 1.06                    |            |           |              |             |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 40              |            |           |              |             | tersectior |            |      |      |     |      |      |     |
| Intersection Capacity Utilizat             | tion 91.5% |           |              | IC          | U Level    | of Service | e F  |      |     |      |      |     |
| Analysis Period (min) 15                   |            |           |              |             |            |            |      |      |     |      |      |     |
| <ul> <li>Volume exceeds capacit</li> </ul> |            |           | cally infin  | ite.        |            |            |      |      |     |      |      |     |
| Queue shown is maximu                      |            |           |              |             |            |            |      |      |     |      |      |     |
| # 95th percentile volume e                 |            |           | ieue may     | be longe    | r.         |            |      |      |     |      |      |     |
| Queue shown is maximu                      |            |           |              |             |            |            |      |      |     |      |      |     |
| m Volume for 95th percent                  | tile queue | is metere | d by upst    | ream sigr   | nal.       |            |      |      |     |      |      |     |

### Splits and Phases: 78: Temple Street & George Street

|     | <b>0</b> 9 | ø₂ (R)   | ×   | Ø1 | <b>≜</b> ¶ <sub>Ø4</sub> |
|-----|------------|----------|-----|----|--------------------------|
| 4 s |            | 28 s     | 4 s |    | 24 s                     |
|     |            | 🗸 Ø6 (R) |     |    | <b>↓</b> ™øs             |
|     |            | 28 s     |     |    | 24 s                     |

### New Haven Two-Way Study 80: Church Street & Crown Street

|                         | ۶     | +     | *    | 4        | t     | •    | •     | Ť     | *    | 1    | ţ     | ~    |
|-------------------------|-------|-------|------|----------|-------|------|-------|-------|------|------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL      | WBT   | WBR  | NBL   | NBT   | NBR  | SBL  | SBT   | SBR  |
| Lane Configurations     |       | 4     |      | <u> </u> | eî 👘  |      | ٦     | •     |      |      | ¢Î    |      |
| Traffic Volume (vph)    | 52    | 0     | 52   | 52       | 310   | 119  | 109   | 609   | 0    | 0    | 232   | 52   |
| Future Volume (vph)     | 52    | 0     | 52   | 52       | 310   | 119  | 109   | 609   | 0    | 0    | 232   | 52   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900  | 1900  | 1900 | 1900 | 1900  | 1900 |
| Storage Length (ft)     | 0     |       | 0    | 50       |       | 0    | 75    | .,    | 0    | 0    | .,    | 0    |
| Storage Lanes           | 0     |       | 0    | 1        |       | 0    | 1     |       | 0    | 0    |       | 0    |
| Taper Length (ft)       | 0     |       |      | 15       |       | Ū    | 15    |       |      | 0    |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00 | 1.00  | 1.00 |
| Ped Bike Factor         |       | 0.92  |      | 0.91     | 0.96  |      |       |       |      |      | 0.97  |      |
| Frt                     |       | 0.932 |      | 0.71     | 0.958 |      |       |       |      |      | 0.975 |      |
| Flt Protected           |       | 0.976 |      | 0.950    | 0.700 |      | 0.950 |       |      |      | 0.770 |      |
| Satd. Flow (prot)       | 0     | 1391  | 0    | 1540     | 1216  | 0    | 1540  | 1338  | 0    | 0    | 1536  | 0    |
| Flt Permitted           | U     | 0.506 | U    | 0.689    | 1210  | v    | 0.950 | 1000  | U    | U    | 1000  | U    |
| Satd. Flow (perm)       | 0     | 721   | 0    | 1018     | 1216  | 0    | 1540  | 1338  | 0    | 0    | 1536  | 0    |
| Right Turn on Red       | U     | 721   | No   | 1010     | 1210  | No   | 1010  | 1000  | No   | U    | 1000  | No   |
| Satd. Flow (RTOR)       |       |       | NO   |          |       | NO   |       |       | 110  |      |       | NO   |
| Link Speed (mph)        |       | 25    |      |          | 25    |      |       | 25    |      |      | 25    |      |
| Link Distance (ft)      |       | 412   |      |          | 510   |      |       | 415   |      |      | 522   |      |
| Travel Time (s)         |       | 11.2  |      |          | 13.9  |      |       | 11.3  |      |      | 14.2  |      |
| Confl. Peds. (#/hr)     | 35    | 11.2  | 35   | 35       | 10.7  | 35   |       | 11.0  | 35   |      | 11.2  | 35   |
| Confl. Bikes (#/hr)     | 00    |       | 10   | 00       |       | 10   |       |       | 10   |      |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.92     | 0.92  | 0.92 | 0.93  | 0.93  | 0.93 | 0.92 | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 0%    | 2%    | 0%   | 2%       | 4%    | 12%  | 2%    | 5%    | 2%   | 2%   | 2%    | 2%   |
| Parking (#/hr)          | 0,0   | 270   | 0,10 | 270      | 10    |      | 270   | 10    | 270  | 270  | 270   | 270  |
| Adj. Flow (vph)         | 57    | 0     | 57   | 57       | 337   | 129  | 117   | 655   | 0    | 0    | 252   | 57   |
| Shared Lane Traffic (%) |       | -     |      |          |       |      |       |       | -    | -    |       |      |
| Lane Group Flow (vph)   | 0     | 114   | 0    | 57       | 466   | 0    | 117   | 655   | 0    | 0    | 309   | 0    |
|                         | Perm  | NA    |      | pm+pt    | NA    |      | Prot  | NA    |      |      | NA    |      |
| Protected Phases        |       | 6     |      | 5        | 2     |      | 7     | 4     |      |      | 8     |      |
| Permitted Phases        | 6     |       |      | 2        |       |      |       |       |      |      |       |      |
| Detector Phase          | 6     | 6     |      | 5        | 2     |      | 7     | 4     |      |      | 8     |      |
| Switch Phase            |       |       |      |          |       |      |       |       |      |      |       |      |
| Minimum Initial (s)     | 7.0   | 7.0   |      | 3.0      | 7.0   |      | 3.0   | 7.0   |      |      | 7.0   |      |
| Minimum Split (s)       | 17.0  | 17.0  |      | 7.0      | 17.0  |      | 7.0   | 17.0  |      |      | 17.0  |      |
| Total Split (s)         | 29.0  | 29.0  |      | 10.0     | 39.0  |      | 13.0  | 40.0  |      |      | 27.0  |      |
|                         | 32.2% | 32.2% |      | 11.1%    | 43.3% |      | 14.4% | 44.4% |      |      | 30.0% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0      | 3.0   |      | 3.0   | 3.0   |      |      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0      | 1.0   |      | 1.0   | 1.0   |      |      | 1.0   |      |
| Lost Time Adjust (s)    |       | 0.0   |      | 0.0      | 0.0   |      | 0.0   | 0.0   |      |      | 0.0   |      |
| Total Lost Time (s)     |       | 4.0   |      | 4.0      | 4.0   |      | 4.0   | 4.0   |      |      | 4.0   |      |
| Lead/Lag                | Lead  | Lead  |      | Lag      |       |      | Lag   |       |      |      | Lead  |      |
| Lead-Lag Optimize?      |       |       |      | 5        |       |      | 5     |       |      |      |       |      |
|                         | None  | None  |      | None     | None  |      | None  | C-Min |      |      | C-Min |      |
| Act Effct Green (s)     |       | 28.7  |      | 35.0     | 35.0  |      | 11.6  | 41.8  |      |      | 26.2  |      |
| Actuated g/C Ratio      |       | 0.32  |      | 0.39     | 0.39  |      | 0.13  | 0.46  |      |      | 0.29  |      |
| v/c Ratio               |       | 0.50  |      | 0.13     | 0.99  |      | 0.59  | 1.05  |      |      | 0.69  |      |
| Control Delay           |       | 36.1  |      | 19.0     | 68.0  |      | 49.0  | 71.7  |      |      | 32.7  |      |
| Queue Delay             |       | 4.6   |      | 0.0      | 42.3  |      | 0.0   | 5.7   |      |      | 0.0   |      |
| Total Delay             |       | 40.6  |      | 19.0     | 110.3 |      | 49.0  | 77.4  |      |      | 32.7  |      |

Lanes, Volumes, Timings SLR

| Lane Group                                  | Ø9   | Ø10  |
|---------------------------------------------|------|------|
| Lane Configurations                         |      |      |
| Traffic Volume (vph)                        |      |      |
| Future Volume (vph)                         |      |      |
| Ideal Flow (vphpl)                          |      |      |
| Storage Length (ft)                         |      |      |
| Storage Lanes                               |      |      |
| Taper Length (ft)                           |      |      |
| Lane Util. Factor                           |      |      |
| Ped Bike Factor                             |      |      |
| Frt                                         |      |      |
| Flt Protected                               |      |      |
| Satd. Flow (prot)                           |      |      |
| Flt Permitted                               |      |      |
|                                             |      |      |
| Satd. Flow (perm)                           |      |      |
| Right Turn on Red                           |      |      |
| Satd. Flow (RTOR)                           |      |      |
| Link Speed (mph)                            |      |      |
| Link Distance (ft)                          |      |      |
| Travel Time (s)                             |      |      |
| Confl. Peds. (#/hr)                         |      |      |
| Confl. Bikes (#/hr)                         |      |      |
| Peak Hour Factor                            |      |      |
| Heavy Vehicles (%)                          |      |      |
| Parking (#/hr)                              |      |      |
| Adj. Flow (vph)                             |      |      |
| Shared Lane Traffic (%)                     |      |      |
| Lane Group Flow (vph)                       |      |      |
| Turn Type                                   |      |      |
| Protected Phases                            | 9    | 10   |
| Permitted Phases                            |      |      |
| Detector Phase                              |      |      |
| Switch Phase                                |      |      |
| Minimum Initial (s)                         | 2.0  | 2.0  |
| Minimum Split (s)                           | 7.0  | 4.0  |
| Total Split (s)                             | 7.0  | 4.0  |
| Total Split (%)                             | 8%   | 4%   |
| Yellow Time (s)                             | 2.0  | 2.0  |
| All-Red Time (s)                            | 0.0  | 0.0  |
| Lost Time Adjust (s)                        | 0.0  | 0.0  |
| Total Lost Time (s)                         |      |      |
|                                             |      |      |
| Lead/Lag                                    |      |      |
| Lead-Lag Optimize?                          | A I  | N    |
| Recall Mode                                 | None | None |
| Act Effct Green (s)                         |      |      |
| Actuated g/C Ratio                          |      |      |
| v/c Ratio                                   |      |      |
|                                             |      |      |
| Control Delay                               |      |      |
| Control Delay<br>Queue Delay<br>Total Delay |      |      |

Lanes, Volumes, Timings SLR

Synchro 11 Report Page 221

# New Haven Two-Way Study 80: Church Street & Crown Street

|                                             | ≯ →                 | $\mathbf{r}$     | ∢        | ←          | •          | 1    | 1     | 1   | 1   | ŧ    | ~  |
|---------------------------------------------|---------------------|------------------|----------|------------|------------|------|-------|-----|-----|------|----|
| Lane Group                                  | EBL EBT             | EBR              | WBL      | WBT        | WBR        | NBL  | NBT   | NBR | SBL | SBT  | SB |
| LOS                                         | D                   |                  | В        | F          |            | D    | E     |     |     | С    |    |
| Approach Delay                              | 40.6                |                  |          | 100.4      |            |      | 73.1  |     |     | 32.7 |    |
| Approach LOS                                | D                   |                  |          | F          |            |      | E     |     |     | С    |    |
| Stops (vph)                                 | 88                  |                  | 33       | 355        |            | 94   | 429   |     |     | 277  |    |
| Fuel Used(gal)                              | 1                   |                  | 1        | 9          |            | 2    | 13    |     |     | 4    |    |
| CO Emissions (g/hr)                         | 103                 |                  | 39       | 640        |            | 128  | 887   |     |     | 295  |    |
| VOx Emissions (g/hr)                        | 20                  |                  | 8        | 125        |            | 25   | 173   |     |     | 57   |    |
| VOC Emissions (g/hr)                        | 24                  |                  | 9        | 148        |            | 30   | 206   |     |     | 68   |    |
| Dilemma Vehicles (#)                        | 0                   |                  | 0        | 0          |            | 0    | 0     |     |     | 0    |    |
| Queue Length 50th (ft)                      | 57                  |                  | 20       | 257        |            | 63   | ~446  |     |     | 193  |    |
| Queue Length 95th (ft)                      | #118                |                  | 45       | #461       |            | m#90 | m#625 |     |     | m227 |    |
| Internal Link Dist (ft)                     | 332                 |                  |          | 430        |            |      | 335   |     |     | 442  |    |
| Turn Bay Length (ft)                        |                     |                  | 50       |            |            | 75   |       |     |     |      |    |
| Base Capacity (vph)                         | 232                 |                  | 432      | 472        |            | 198  | 621   |     |     | 446  |    |
| Starvation Cap Reductn                      | 0                   |                  | 0        | 0          |            | 0    | 9     |     |     | 0    |    |
| Spillback Cap Reductn                       | 66                  |                  | 0        | 222        |            | 0    | 8     |     |     | 0    |    |
| Storage Cap Reductn                         | 0                   |                  | 0        | 0          |            | 0    | 0     |     |     | 0    |    |
| Reduced v/c Ratio                           | 0.69                |                  | 0.13     | 1.86       |            | 0.59 | 1.07  |     |     | 0.69 |    |
| Intersection Summary                        |                     |                  |          |            |            |      |       |     |     |      |    |
| JI                                          | BD                  |                  |          |            |            |      |       |     |     |      |    |
| Cycle Length: 90                            |                     |                  |          |            |            |      |       |     |     |      |    |
| Actuated Cycle Length: 90                   |                     |                  |          |            |            |      |       |     |     |      |    |
| Offset: 35 (39%), Referenced                | d to phase 4:NBT a  | and 8:SBT, S     | Start of | Yellow     |            |      |       |     |     |      |    |
| Vatural Cycle: 140                          |                     |                  |          |            |            |      |       |     |     |      |    |
| Control Type: Actuated-Coor                 | dinated             |                  |          |            |            |      |       |     |     |      |    |
| Maximum v/c Ratio: 1.05                     | -                   |                  |          |            |            |      |       |     |     |      |    |
| ntersection Signal Delay: 72                |                     |                  |          | tersectior |            | _    |       |     |     |      |    |
| ntersection Capacity Utilizat               | ion 82.7%           |                  | IC       | CU Level o | of Service | θE   |       |     |     |      |    |
| Analysis Period (min) 15                    |                     |                  |          |            |            |      |       |     |     |      |    |
| <ul> <li>Volume exceeds capacity</li> </ul> |                     | ically infinite. |          |            |            |      |       |     |     |      |    |
| Queue shown is maximur                      |                     |                  |          |            |            |      |       |     |     |      |    |
| # 95th percentile volume e                  |                     | ueue may be      | e longe  | er.        |            |      |       |     |     |      |    |
| Queue shown is maximur                      | J                   |                  |          |            |            |      |       |     |     |      |    |
| m Volume for 95th percent                   | ile queue is metere | ed by upstrea    | am sig   | nal.       |            |      |       |     |     |      |    |

### Splits and Phases: 80: Church Street & Crown Street

| ₩ø9   | ₩<br>Ø2 |             |     | Ø10 Ø4 (R) |             |
|-------|---------|-------------|-----|------------|-------------|
| 7 s 🛛 | 39 s    |             | 4 s | 40 s       |             |
|       | App6    | <b>√</b> Ø5 |     | 🛡 Ø8 (R)   | <b>1</b> Ø7 |
|       | 29 s    | 10 s        |     | 27 s       | 13 s        |

# New Haven Two-Way Study 81: Church Street & George Street

|                         | ∢     |       | ~    | ~     | +     | A.   | *        | +     | *    | 5        | 1     |      |
|-------------------------|-------|-------|------|-------|-------|------|----------|-------|------|----------|-------|------|
|                         | _     | -     | •    | *     |       |      | )        |       | 1    |          | *     | •    |
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR  | NBL      | NBT   | NBR  | SBL      | SBT   | SBR  |
| Lane Configurations     | - ሻ   | - î>  |      |       | 4     |      | <u> </u> | ef 👘  |      | <u> </u> | ef 👘  |      |
| Traffic Volume (vph)    | 258   | 277   | 185  | 78    | 103   | 121  | 78       | 346   | 72   | 52       | 207   | 78   |
| Future Volume (vph)     | 258   | 277   | 185  | 78    | 103   | 121  | 78       | 346   | 72   | 52       | 207   | 78   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 | 1900     | 1900  | 1900 | 1900     | 1900  | 1900 |
| Storage Length (ft)     | 150   |       | 0    | 150   |       | 0    | 0        |       | 0    | 75       |       | 0    |
| Storage Lanes           | 1     |       | 0    | 1     |       | 0    | 1        |       | 0    | 1        |       | 0    |
| Taper Length (ft)       | 25    |       |      | 25    |       |      | 0        |       |      | 15       |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 |
| Ped Bike Factor         | 0.96  | 0.98  |      |       | 0.95  |      |          | 0.98  |      |          | 0.97  |      |
| Frt                     |       | 0.940 |      |       | 0.919 |      |          | 0.974 |      |          | 0.959 |      |
| Flt Protected           | 0.950 |       |      | 0.950 |       |      | 0.950    |       |      | 0.950    |       |      |
| Satd. Flow (prot)       | 1510  | 1456  | 0    | 1481  | 1366  | 0    | 1540     | 1518  | 0    | 1540     | 1518  | 0    |
| Flt Permitted           | 0.421 |       |      | 0.183 |       |      | 0.950    |       |      | 0.950    |       |      |
| Satd. Flow (perm)       | 645   | 1456  | 0    | 285   | 1366  | 0    | 1540     | 1518  | 0    | 1540     | 1518  | 0    |
| Right Turn on Red       |       |       | No   |       |       | No   |          |       | No   |          |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |      |          |       |      |          |       |      |
| Link Speed (mph)        |       | 25    |      |       | 25    |      |          | 25    |      |          | 25    |      |
| Link Distance (ft)      |       | 404   |      |       | 524   |      |          | 453   |      |          | 415   |      |
| Travel Time (s)         |       | 11.0  |      |       | 14.3  |      |          | 12.4  |      |          | 11.3  |      |
| Confl. Peds. (#/hr)     | 20    |       | 20   | 20    |       | 20   |          |       | 20   |          |       | 20   |
| Confl. Bikes (#/hr)     |       |       | 10   |       |       | 10   |          |       | 10   |          |       | 10   |
| Peak Hour Factor        | 0.92  | 0.92  | 0.92 | 0.85  | 0.85  | 0.85 | 0.91     | 0.91  | 0.91 | 0.92     | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 4%    | 3%    | 6%   | 6%    | 2%    | 8%   | 2%       | 4%    | 5%   | 2%       | 2%    | 0%   |
| Adj. Flow (vph)         | 280   | 301   | 201  | 92    | 121   | 142  | 86       | 380   | 79   | 57       | 225   | 85   |
| Shared Lane Traffic (%) |       |       |      |       |       |      |          |       |      |          |       |      |
| Lane Group Flow (vph)   | 280   | 502   | 0    | 92    | 263   | 0    | 86       | 459   | 0    | 57       | 310   | 0    |
| Turn Type               | pm+pt | NA    |      | pm+pt | NA    |      | Prot     | NA    |      | Prot     | NA    |      |
| Protected Phases        | 1     | 6     |      | 5     | 2     |      | 7        | 4     |      | 3        | 8     |      |
| Permitted Phases        | 6     |       |      | 2     |       |      |          |       |      |          |       |      |
| Detector Phase          | 1     | 6     |      | 5     | 2     |      | 7        | 4     |      | 3        | 8     |      |
| Switch Phase            |       |       |      |       |       |      |          |       |      |          |       |      |
| Minimum Initial (s)     | 3.0   | 7.0   |      | 3.0   | 7.0   |      | 3.0      | 7.0   |      | 3.0      | 7.0   |      |
| Minimum Split (s)       | 7.0   | 17.0  |      | 7.0   | 17.0  |      | 7.0      | 17.0  |      | 7.0      | 17.0  |      |
| Total Split (s)         | 10.0  | 35.0  |      | 7.0   | 32.0  |      | 14.0     | 26.0  |      | 11.0     | 23.0  |      |
| Total Split (%)         | 11.1% | 38.9% |      | 7.8%  | 35.6% |      | 15.6%    | 28.9% |      | 12.2%    | 25.6% |      |
| Yellow Time (s)         | 3.0   | 3.0   |      | 3.0   | 3.0   |      | 3.0      | 3.0   |      | 3.0      | 3.0   |      |
| All-Red Time (s)        | 1.0   | 1.0   |      | 1.0   | 1.0   |      | 1.0      | 1.0   |      | 1.0      | 1.0   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0   |      | 0.0   | 0.0   |      | 0.0      | 0.0   |      | 0.0      | 0.0   |      |
| Total Lost Time (s)     | 4.0   | 4.0   |      | 4.0   | 4.0   |      | 4.0      | 4.0   |      | 4.0      | 4.0   |      |
| Lead/Lag                | Lag   | Lead  |      | Lag   | Lead  |      | Lag      | Lead  |      | Lag      | Lead  |      |
| Lead-Lag Optimize?      |       |       |      |       |       |      |          |       |      |          |       |      |
| Recall Mode             | None  | None  |      | None  | None  |      | None     | C-Min |      | None     | C-Min |      |
| Act Effct Green (s)     | 37.8  | 31.0  |      | 24.9  | 21.9  |      | 8.0      | 32.4  |      | 5.5      | 30.0  |      |
| Actuated g/C Ratio      | 0.42  | 0.34  |      | 0.28  | 0.24  |      | 0.09     | 0.36  |      | 0.06     | 0.33  |      |
| v/c Ratio               | 0.72  | 1.00  |      | 0.78  | 0.79  |      | 0.63     | 0.84  |      | 0.61     | 0.61  |      |
| Control Delay           | 39.5  | 72.3  |      | 66.9  | 48.7  |      | 59.4     | 45.7  |      | 76.8     | 38.6  |      |
| Queue Delay             | 6.7   | 7.5   |      | 0.0   | 17.0  |      | 0.0      | 6.7   |      | 0.0      | 0.0   |      |
| Total Delay             | 46.2  | 79.8  |      | 66.9  | 65.7  |      | 59.4     | 52.4  |      | 76.8     | 38.6  |      |
| LOS                     | D     | E     |      | E     | E     |      | E        | D     |      | E        | D     |      |

Lanes, Volumes, Timings SLR

Synchro 11 Report Page 224

| Lane Group                            | Ø9   | Ø10  |
|---------------------------------------|------|------|
| Lane Configurations                   |      |      |
| Traffic Volume (vph)                  |      |      |
| Future Volume (vph)                   |      |      |
| Ideal Flow (vphpl)                    |      |      |
| Storage Length (ft)                   |      |      |
| Storage Lanes                         |      |      |
| Taper Length (ft)                     |      |      |
| Lane Util. Factor                     |      |      |
| Ped Bike Factor                       |      |      |
| Frt                                   |      |      |
| Flt Protected                         |      |      |
| Satd. Flow (prot)                     |      |      |
| Flt Permitted                         |      |      |
| Satd. Flow (perm)                     |      |      |
| Right Turn on Red                     |      |      |
| Satd. Flow (RTOR)                     |      |      |
|                                       |      |      |
| Link Speed (mph)                      |      |      |
| Link Distance (ft)<br>Travel Time (s) |      |      |
| Confl. Peds. (#/hr)                   |      |      |
| Confl. Bikes (#/hr)                   |      |      |
| , , ,                                 |      |      |
| Peak Hour Factor                      |      |      |
| Heavy Vehicles (%)                    |      |      |
| Adj. Flow (vph)                       |      |      |
| Shared Lane Traffic (%)               |      |      |
| Lane Group Flow (vph)                 |      |      |
| Turn Type                             |      |      |
| Protected Phases                      | 9    | 10   |
| Permitted Phases                      |      |      |
| Detector Phase                        |      |      |
| Switch Phase                          |      |      |
| Minimum Initial (s)                   | 2.0  | 2.0  |
| Minimum Split (s)                     | 7.0  | 4.0  |
| Total Split (s)                       | 7.0  | 4.0  |
| Total Split (%)                       | 8%   | 4%   |
| Yellow Time (s)                       | 2.0  | 2.0  |
| All-Red Time (s)                      | 0.0  | 0.0  |
| Lost Time Adjust (s)                  |      |      |
| Total Lost Time (s)                   |      |      |
| Lead/Lag                              |      |      |
| Lead-Lag Optimize?                    |      |      |
| Recall Mode                           | None | None |
| Act Effct Green (s)                   |      |      |
| Actuated g/C Ratio                    |      |      |
| v/c Ratio                             |      |      |
| Control Delay                         |      |      |
| Queue Delay                           |      |      |
| Total Delay                           |      |      |
| LOS                                   |      |      |
|                                       |      |      |

## New Haven Two-Way Study 81: Church Street & George Street

|                                           | ≯           | -         | $\mathbf{r}$ | 4           | +          | •          | 1    | Ť    | 1   | 1    | ŧ    | 4   |
|-------------------------------------------|-------------|-----------|--------------|-------------|------------|------------|------|------|-----|------|------|-----|
| Lane Group                                | EBL         | EBT       | EBR          | WBL         | WBT        | WBR        | NBL  | NBT  | NBR | SBL  | SBT  | SBF |
| Approach Delay                            |             | 67.7      |              |             | 66.0       |            |      | 53.5 |     |      | 44.5 |     |
| Approach LOS                              |             | E         |              |             | E          |            |      | D    |     |      | D    |     |
| Stops (vph)                               | 165         | 389       |              | 59          | 204        |            | 74   | 302  |     | 52   | 243  |     |
| Fuel Used(gal)                            | 4           | 10        |              | 2           | 4          |            | 2    | 7    |     | 1    | 4    |     |
| CO Emissions (g/hr)                       | 251         | 691       |              | 114         | 280        |            | 107  | 466  |     | 84   | 292  |     |
| NOx Emissions (g/hr)                      | 49          | 134       |              | 22          | 54         |            | 21   | 91   |     | 16   | 57   |     |
| VOC Emissions (g/hr)                      | 58          | 160       |              | 27          | 65         |            | 25   | 108  |     | 19   | 68   |     |
| Dilemma Vehicles (#)                      | 0           | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Queue Length 50th (ft)                    | 110         | ~283      |              | 31          | 139        |            | 48   | 228  |     | 35   | 139  |     |
| Queue Length 95th (ft)                    | #192        | #492      |              | #74         | 195        |            | 94   | #489 |     | m58  | #323 |     |
| Internal Link Dist (ft)                   |             | 324       |              |             | 444        |            |      | 373  |     |      | 335  |     |
| Turn Bay Length (ft)                      | 150         |           |              | 150         |            |            |      |      |     | 75   |      |     |
| Base Capacity (vph)                       | 387         | 501       |              | 118         | 424        |            | 171  | 546  |     | 119  | 506  |     |
| Starvation Cap Reductn                    | 0           | 13        |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn                     | 68          | 0         |              | 0           | 146        |            | 0    | 56   |     | 0    | 0    |     |
| Storage Cap Reductn                       | 0           | 0         |              | 0           | 0          |            | 0    | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio                         | 0.88        | 1.03      |              | 0.78        | 0.95       |            | 0.50 | 0.94 |     | 0.48 | 0.61 |     |
| Intersection Summary                      |             |           |              |             |            |            |      |      |     |      |      |     |
| 21                                        | CBD         |           |              |             |            |            |      |      |     |      |      |     |
| Cycle Length: 90                          |             |           |              |             |            |            |      |      |     |      |      |     |
| Actuated Cycle Length: 90                 |             |           |              |             |            |            |      |      |     |      |      |     |
| Offset: 0 (0%), Referenced                | to phase 4: | NBT and   | 8:SBT, S     | Start of Ye | ellow      |            |      |      |     |      |      |     |
| Natural Cycle: 90                         |             |           |              |             |            |            |      |      |     |      |      |     |
| Control Type: Actuated-Coc                | ordinated   |           |              |             |            |            |      |      |     |      |      |     |
| Maximum v/c Ratio: 1.00                   |             |           |              |             |            |            |      |      |     |      |      |     |
| Intersection Signal Delay: 5              |             |           |              |             | tersectior |            | _    |      |     |      |      |     |
| Intersection Capacity Utiliza             | ation 76.4% | I         |              | IC          | U Level    | of Service | e D  |      |     |      |      |     |
| Analysis Period (min) 15                  |             |           |              |             |            |            |      |      |     |      |      |     |
| <ul> <li>Volume exceeds capaci</li> </ul> |             |           | cally infin  | ite.        |            |            |      |      |     |      |      |     |
| Queue shown is maximu                     |             |           |              |             |            |            |      |      |     |      |      |     |
| # 95th percentile volume                  |             |           | ieue may     | be longe    | er.        |            |      |      |     |      |      |     |
| Queue shown is maximu                     |             |           |              |             | 1          |            |      |      |     |      |      |     |
| m Volume for 95th percen                  | ntile queue | is metere | a by upst    | ream sigr   | nal.       |            |      |      |     |      |      |     |

### Splits and Phases: 81: Church Street & George Street

| Ă   | Ø9 | ₹ø2                    | /    | Ø1          | <u>.</u> |        | Ţ    | Ø3   |
|-----|----|------------------------|------|-------------|----------|--------|------|------|
| 7 s |    | 32 s                   | 10 s | 3           | 4 s      | 26 s   |      | 11 s |
|     |    | <b>↓</b> <sub>Ø6</sub> |      | <b>√</b> Ø5 |          | Ø8 (R) | •    | 07   |
|     |    | 35 s                   |      | 7 s         |          | 23 s   | 14 s | ;    |



# Appendix C Public Input Summaries

# New Haven One-Way to Two-Way Conversion Study: Final Report

South Central Regional Council of Governments (SCRCOG)/City of New Haven

SLR Project No.: 141.20130.00003

# **1<sup>ST</sup> PUBLIC INFORMATION MEETING SUMMARY**

A detailed summary of the May 16, 2023 Public Meeting is as follows:

Sandeep Aysola (City of New Haven) welcomed everyone to the meeting and provided a brief summary of the project background and objectives and introduced Mayor Justin Elicker. Mayor Elicker explained the importance of the project within the City. Mr. Aysola then introduced the consultant project team to provide a presentation on the project.

Kwesi Brown (SLR) began the presentation with an introduction to the project area and objectives. Mr. Brown noted the following:

- The Goal of the project is to convert streets from 1-way to 2-way to improve safety and efficiency for all transportation modes. Other objectives include:
  - Align with Vision Zero safety principles & Safe Routes for All (SRFA) Active Transportation Plan
  - o Accommodate sustainable modes of transportation
  - Improve traffic circulation, safety, and mobility
- > Study timeline:
  - Notice to Proceed in November 2022
  - Winter & Spring 2023: Data collection, existing conditions evaluation, and first public meeting
  - Summer 2023: Future condition traffic analysis, develop concepts, and second public meeting
  - Fall & Winter 2023: Prepare implementation plan and final study report
- > The Project will build upon previous studies completed in the downtown area, including:
  - One-Way to Two-way Conversion Study (2013-2014)
  - Move New Haven Study (2019)
  - Safe Routes for All Active Transportation Plan (2022)

Neil Olinski (SLR) presented the project base mapping and provided an overview of existing conditions in the project area, including lane configurations, transit routes, bus stop locations, and parking within the project area.

Charlie Baker (VHB) presented the traffic operations and crash history along each of the project roadways:

• Traffic counts were collected during the weekday morning and evening peak traffic periods at 28 intersections

- 2-years of crash data were reviewed at each of the project intersections using the Connecticut Crash Data Repository. Mr. Baker presented an overview of the crash records at each of the project intersections.
- Capacity analysis was conducted at each of the project intersections using industry standard Synchro software. Capacity analysis indicates that all project intersections are currently operating at an overall level of service (LOS) D or better during the peak traffic periods.

Mr. Brown (SLR) concluded the presentation with a discussion on the next steps on the project. The project team will evaluate future conditions, develop conceptual improvement plans, and a second public information meeting will be held in the Summer of 2023.

Mr. Aysola (New Haven) opened the meeting up to public comment using the chat window within Zoom, and Sandeep read select questions aloud for discussion with the project team. The following presents a summary of the public questions/comments read during the meeting, followed by responses from the project team.

A transcript of the chat window questions/comments from the Zoom meeting is as follows:

Q1:Why were these specific corridors selected?

 Response 1: It was noted that the corridors were chosen to complement previous studies. The street segments for this study were also chosen so as to not duplicate efforts of other current city and/or state projects.

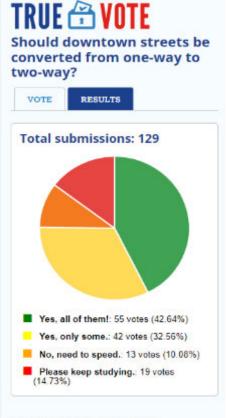
Q2: Will the design for Church Street include protected bike infrastructure?

- Response 2: The prior (2014) two-way design for Church Street only included basic (un-protected) bike lanes. Protected bicycle infrastructure for Church Street will be considered as part of this concept-design study.
- Q3: The bus stop at the northeast corner of Church Street and Chapel should be included in this study and shown on the base mapping. It is a crew change point where lots of bus passengers transfer.
  - Response 3: While not originally in the study area of this current two-way conversion and concept-design study, based on this comment, this bus stop will be included in the concept-designs.
- Q4: Could a map be developed which shows all the one to two-way conversions, the State project in front of City Hall, and the "BRT" on Elm Street?
  - Response 4: Figure 1, included herewith, now includes this information.

Q5: What is the estimated cost for one-way to two-way conversions?

 Response 5: It was noted that costs to implement two-way conversion will be estimated later in the study process after conceptual improvement plans have been developed.

- Q6: One-way streets should be intuitively safer than two-way streets due to reduced conflicts, so wouldn't converting to two-way streets increase crashes? Will the project consider ADA compliance issues?
  - Response 6.1: It was noted that there are trade-offs involved in one-way vs. twoway streets. The project team believes that converting to two-way streets will decrease speeds, make the roadways less automobile-centric, reduce multiple threat conflicts, and overall improve safety. (Refer to Table 1 for pros and cons.)
  - Response 6.2: Conceptual improvements developed under this project will include improvements to ADA compliance.
- Q7: Once a plan is created, how will it be funded? What is the estimated date of completion? When will BRT project have a public info meeting?
  - Response 7.1: It was noted that specific funding mechanisms to implement the two-way conversion have not yet been determined.
  - Response 7.2: Timing of when the two-way conversion will be implemented is also not known.
  - Response 7.3: As of May 2023, state's BRT project was in its very early stages and its public information meeting date has not yet been determined.


Q8: Will there be consideration for removing traffic signals under this project?

- Response 8: It was noted that one-way to two-way conversion will change traffic patterns. As such, evaluation will be given to whether signals will still be warranted with the new traffic patterns and if some signals could be converted to stop-sign control instead..
- Q9: This project should consider all users, not just bicycles.
  - Response 9: It was agreed that these streets are for all types of users, and this concept-design study will consider vulnerable users, including those with disabilities.
- Q10: There have been studies in the past, but nothing has changed. How will this time be different?
  - Response 10: It was noted that an implementation plan will be developed as part of this concept-design study to ensure that recommended improvements are feasible and constructable. The past two-way conversion effort also stalled due to funding issues.
- Q11: What has been done to reach out to businesses?
  - Response 11: It was noted that this May 2023 public information meeting is the first public meeting of this current two-way conversion concept-design effort so far, and that there will be additional meetings planned as the study advances.

- Q12: Can temporary quick fixes (painted bike lanes, etc.) take place on these streets while the study is taking place? If it takes years, do we risk losing the ability to have quick fixes in the interim?
  - Response 12: It was noted that short-term improvements can be completed in the interim and that short-term improvements can be completed based on the forthcoming long-term recommendations from this study. There is no need to wait to make at least some changes.
- Q13: Will two-way conversions be completed all at once? Or in pieces? What will be the learning process for the public?
  - Response 13.1: As mentioned above, not every improvement needs to happen all at once. It was noted that the extent to which the two-way conversion will implemented in pieces, in large sections, or even all at once will be further evaluated during the full-design/construction phases, and will be contingent on funding.
  - Response 13.2: It was also noted that there will be additional public outreach to educate the public at the appropriate time closer to full-design/construction.

Mr. Aysola concluded the meeting and provided links to the City website and contact information for additional comments/questions about the project.

Both the New Haven Register and the New Haven Independent published articles about the project after the initial public meeting. The <u>New Haven Independent article</u> included a live poll that asked the question "Should downtown streets be converted from one-way to two-way?", which found that around 3 out of 4 people support the two-way conversion on at least some of downtown's streets.



©2023 New Haven Independent

## Public Comments from Online Survey Question of May-September '23

In response to the question **"What do you consider to be the most important issues to consider in converting parts of York, George, Church and Chapel Streets from one-way to two way?"** the following responses were received:

- Focus on the minimum materials and construction and get it done. New York started putting down planters and boulders and hung up traffic lights in the 2000s. That built momentum for further change. No one wants to deal with complaining entitled drivers, but there's no way around it. There is real backing for a change in allocating street space to modes other than the car. I want to see some urgency, not just a new round of studies. (May 2023)
- It makes no sense at all. (May 2023)
- Protected bike lanes should be included on these routes (except for York it is too narrow most likely) during the conversion. There are no protected bike lanes downtown which is a safety issue and discourages bike mode share. Paint only bike lanes or sharrows are inadequate. Many parking garages nearby remove on street parking if necessary to install protected bike lane. (September 2023)
- York St 10' lane in either direction with parking on both sides, traffic calming measures for shared and narrowed street environment for bike/ped safety. George St 10-11' lane in either direction, 5' separated bike lanes, 2' buffers, many parking garages adjacent so parking not necessary on George itself. Church St prioritize bus only lanes and separated bike lanes or cycletrack, connect downtown crossing bike lanes all the way to city hall to show city's priority in multimodal access to government center and civic spaces. Chapel St 10-11' lane in either direction, parking on one side only to make room for protected bike lanes, especially important to include bike lanes all the way to Park St to facilitate Edgewood to Park to Chapel to Downtown bike connection. ALL bike lanes should be fully separated and connected as part of a network with proper protected intersection design, patchwork bike lanes and lack of intersection treatments do not encourage bike mode shift. Thank you! (September 2023)

### Wanted: Public Input On 2-Way Street Conversion Proposals | New Haven Independent

### Yale Art Gallery Comments 11/15/23

Primary concerns:

- Artwork pickups and deliveries with tractor trailers to our only dock located at 201 York St. are <u>exceedingly</u> difficult now. How do these York St. alternatives positively or negatively affect our critical transit operations?
- 2) What are the effects on ease of visitor's accessibility to the Art Gallery with no parking on Chapel St. in front of Art Gallery? Potential conflict for sufficient sidewalk space for any changed location of the extant bus shelters now closer to York (events, crowds, passerby, transit customers, any future HC ramp at main entrance, etc.)?
- Effects on ease of accessibility to our robust Nolen Education Center programing at Street Hall, 59 High St., if no cars/parking allowed on proposed High St. pedestrian only way.

### Specific comments

York Alt 1, #2

- We could still use whole road as we do now with meter bags we would just need additional people to stop traffic from *both* ways. More of a potential traffic bottleneck?
- Proposed new right-hand turning lane onto Chapel St. removes meters in front of Rudolph Hall: trailers could now approach and cut "sight side" (driver's side) into dock if headed South on York. Sight-side backing could be a benefit for 48' trailers which are extremely hard to receive now. We cannot receive 53' trailers. (Q. is there a truck route around to approach the Art Gallery dock at 201 York from Elm St.? – otherwise this is moot). Current blind-side backing is very close to impossible, even with meter bags, as people disregard them and the truck gets jack-knifed: taking more attempts and longer to get into dock and blocking traffic longer, if even successful.
- Proposed bus shelter on East side of York (near current single HC parking spot) may cause issue with trailer cuts when jumping curb?

### York Alt 2, #2

- Same as above.
- Bus shelter on East side of York near corner of JE may cause issues with current trailer approaches and jumping curb (now often *needed* due to blind-side backing approach).

### Chapel Alt 1, #2

• No more parking along front of YUAG facades – is this a barrier to accessibility for visitors?

### Chapel Alt 1, #2

- No more parking along front of YUAG facades is this a barrier to accessibility for visitors?
- Bus shelter moved close to our main entrance. Sidewalk space for conflicting activities of transit and entering Art Gallery building via our only public entrance. Potential conflict for sidewalk space with any future HC ramps at front of Art Gallery.

George Hagerty

Director of Facilities, Yale University Art Gallery george.hagerty@yale.edu Mobile: 781-856-2635



Place: 200 Orange Street Conference Room G2 New Haven, CT

Date: October 18, 2023

Notes Taken by: Charles Baker

Project #: 43234.00

Re: New Haven One-way to Two-way Study Public Information Meeting #2

A public information meeting was held on October 18, 2023 for the above referenced project. The following represents a summary of the meeting.

Sandeep Aysola (City of New Haven) welcomed everyone to the meeting, provided a summary of the project background, and introduced the SLR consultant team, led by Kwesi Brown. The SLR consultant team provided a presentation on the project objectives and progress to date, including an overview of two-way concept plans that have been developed for the Church Street, York Street, Chapel Street, and George Street corridors.

The meeting was then opened up to separate breakout groups for each corridor where attendees could view the concept plans in detail and provide comments. The following presents a summary of the public/comments questions provided by attendees during the meeting:

### **Chapel Street**

- 1. I think it would be better to have a bike lane on the north side if we're going to remove a lane of parking. Either way I worry about parking here.
- 2. Where we have two way streets with no bike lanes, can we slow traffic down and block with speed humps in addition to the raised intersections?
- 3. The cultural center and arts portion of New Haven should not be impacted by removal of parking spots!
- 4. I strongly support getting rid of parking, so option 2 is less positive to me.
- 5. Some concepts have one-way bike routes on either side of the street and others have two-way routes on one side. Which is best practice? Isn't it easier to protect a consolidated lane?
- 6. Keeping Park Street one-way but down to 1 lane with a two-way cycle track is good use of space.
- 7. Design alternate 1 does not account for the need of bus parking to YCBA. Also for the removal of High Street parking.
- 8. As a short term installation, a two-way system on ODD side of street makes more sense.
- 9. Installation of a two-way system on College negates need for two-way buses going from med school to science hall.
- 10. The backup for drop off and pickup for Shubert and CSMH
- 11. Did you run Synchro factoring in exclusive phases for bikes and peds?

- 12. Chapel has businesses of interest points on both sides. Bikes should have access to both side of the street.
- 13. Speed limit for call (sp?) and no overtaking bikes by design for all shared streets.
- 14. Why does Chapel turn back into two one-way lanes past Park Street? This is lost opportunity to complete the street.
- 15. Keep the 2-way going past Park Street to Dwight.
- 16. Alternate #1 preferred. Important to add two-way flow on York so drivers on Chapel can get to Yale York Street garage to park once there is less on-street parking.
- 17. Two-way bicycle path on Chapel. Fully support. Please do more of this throughout the City.
- 18. Make some parking spaces 15 minutes or 30 minutes to prioritize folks stopping off at stores. Longer parkers can use garages.

### **Church Street**

- 1. Broader bike paths to encourage social cycling.
- 2. Speed limits for cars 20 mph. Not allowing cars to overtake bikes.
- 3. I worry about all the lost street parking.
- 4. The raised platforms for BRT add a nice infrastructure enhancement for the buses and nicely protect the bike lane.
- 5. Parking is limited. I do not think removing street parking is a viable option.
- 6. The raised medians in Alternate 2 do not seem as useful as other infrastructure change. While it helps for pedestrian crossing, it seems like it will mostly be empty space and a bit of a waste. The raised BRT platform space seem more useful.
- 7. The federal RAISE grant for MOVE funds BRT on Church. Don't' we need to choose Alternate 1?
- 8. Mane of the bicycles lanes only have a 5 foot width between curb and parking. Seems too narrow. Consider removing parking on one side and add 2-3 foot buffers to bicycle lanes.
- 9. Where would d I bike on the Elm Street here?
- 10. Why so many stops on a rapid transit route?
- 11. Why is the bus lane in the middle of the road where it always will be pulling over. Also, do we have enough bus traffic to justify the bus always lane, and will this assume our hub system of buses going to green will continue for a long time.
- 12. Bus lanes are important to increase transportation options to a wide variety of income levels. I am a biker but support bus lanes.
- 13. I hope bike lanes have physical separation not just flex posts.
- 14. We must have a bus lane on Church Street.

- 15. We don't need a bike lane on Church. Orange and High is bikes.
- 16. Why not extend bus way to Grove? Connect with Whitney buses.
- 17. Routing the bike lane through the Green seems like it is worse for the bikers and worse for the Green. The proposal for Alternate 2 on this issue meets the needs of both.
- 18. BRT project likely to drive this design. I imagine it will be very difficult to accommodate bikes, buses, and traffic. Much better to have two-way bike lanes on Orange Street to connect to East Rock and Farmington Canal Trail at Grove and Orange.

### **George Street**

- 1. This plan removes storage for High School and YNHH shuttle.
- 2. Removal of on street parking is not advisable needed to service 300 George.
- 3. The bikes should be on Crown Street
- 4. Remove signal entirely and put ped priority with all-way stop (referring to York Street at George Street signal).
- 5. Bikes don't belong on Church. They belong on Wall, Crown, Orange, Wall.
- 6. I worry about the loss of on-street parking.
- 7. Parking downtown is already really limited. I do not think any plan that removes parking spaces is feasible.
- 8. If bus shelters are every block, I worry the buses will move very slowly.
- 9. Raised bike paths wherever it is crossed by cars.
- 10. Raised/continuous crosswalk for unsignalized intersection. Maybe even some surface materials as crosswalks.
- 11. I am in favor of taking incremental steps in the right direction. I would love 100% complete streets, but do not let the perfect be the enemy of the good.
- 12. Okay to remove parking spaces as long as there are many garages in study area.

### York Street

- 1. Speed limit for cars 20 mph and do not overtake bikes policy for all shared roads.
- 2. Raised bike path wherever cars are allowed to cut through.
- 3. Might need loading zones for the restaurants.
- 4. This is too long of a cut for bike paths and footpaths (reference to curb cut on York between Crown and Chapel)
- 5. Reconsider making York Street two-way.
- 6. Should we make up for lost on-street parking by making parking garages cheaper?

Ref: 43234.00 October 18, 2023 Page 4

- 7. I like the removal of parking for the infrastructure investments, but if all the designs proposed with reduced parking were put forward, I'd be concerned they wouldn't pass because of the aggregate effect. Although would love to see it all pass.
- 8. Let's reduce all this parking to make better bike routes.
- 9. The raised intersections are great.

### **General Comments**

After the breakout period, the entire group reconvened to discuss general comments and next steps. The following is a summary of the public comments/questions provided at this time:

- 1. One attendee opposes the two-way street conversions in general, and he is concerned that delivery trucks will block travel lanes.
- 2. There was a comment stating a preference to keep York Street one-way but add a bike lane.
- 3. Are there any studies showing effect of converting streets to two-way incrementally vs. converting an entire area to two-way all at once?
- 4. Two-way conversions should be synced with the upcoming BRT project or some other major change, creating an "installation" vs creating a street. Design should be intuitive for all users.
- 5. There was a discussion on the potential changes to on-street parking and whether a reduction in on-street parking could be accommodated by the surrounding parking garages.
  - Data is available on the parking garage capacities and occupancy. In general, there is significant surplus capacity in surrounding parking garages. This occupancy data will be reviewed in detail as part of the Point-in-Time parking study and can be included in the final report for the two-way conversion study.
  - Parking garages may not be a good parking solution for women
  - Consider temporarily lowering the cost of garages
  - Consider changing some on-street parking spaces to 15-minute parking or loading zones to accommodate local businesses
- 6. There was a suggestion to reduce the speed limit to 20 mph and allow bikes and cars to share the road.

Place: Virtual Zoom Meeting

Date: September 24, 2024

Notes Taken by: Charles Baker

Re: New Haven One-way to Two-way SCRCOG Study Public Information Meeting #3 – Final Meeting

- Alderman Eli Sabin and Frank Douglass gave opening remarks about the project.
- Alderman Frank Douglass requested that opportunities for public input be extended.
  - Sandeep noted that the study is being concluded due to the need to close out the consultant's contract. However, there will be additional opportunities for public input as any of the projects identified are advanced.
- Sandeep Aysola (New Haven TT&P) provided an introduction to the project and presented a summary of other ongoing projects within the downtown area.
- Kwesi Brown (SLR) presented an overview of the project, including objectives, study scope, consideration of FHWA safety countermeasures, and study outcomes.
- Neil Olinski (SLR) presented the concept plans that were developed for Chapel Street, York Street, George Street, and Church Street. Neil also presented a summary of estimated construction costs for each of the conceptual improvements.
- Sandeep Aysola (New Haven TT&P) discussed the next steps for implementation for each of the concepts. Sandeep then opened up the meeting for questions/comments.
- Alderman Sabin requested an opportunity to review the design plans for the Chapel Street conversion before it is implemented. Sandeep Aysola offered to setup a separate meeting with Alderman Sabin to review.
- Lior Trestman Comment: Expressed disappointment that bike lanes were not provided on all preferred concept plans and expressed desire for traffic calming and better accommodations for active transportation including bike lanes.
  - Sandeep explained some of the challenges involved in providing bike lanes on some corridors, given the public feedback that was provided previously supporting onstreet parking.
- Lior Trestman Comment: "Has there been any thought of designalization? That's an easy way to slow cars (so they aren't speeding to get through a light)"
  - Sandeep noted that there are federal requirements outlined in the MUTCD for removal traffic signals. This will be considered as appropriate.
- Sandeep Aysola noted that all materials including the presentation slide deck would be posted on the City's website: <a href="http://www.newhavenct.gov">www.newhavenct.gov</a>



# Appendix D Preliminary Cost Estimates

# New Haven One-Way to Two-Way Conversion Study: Final Report

South Central Regional Council of Governments (SCRCOG)/City of New Haven

SLR Project No.: 141.20130.00003

# Concept Cost Estimate | Church Street

| Item No.        | Item                                                | Unit   | Quantity      | Unit \$            |          | Total Cost   |
|-----------------|-----------------------------------------------------|--------|---------------|--------------------|----------|--------------|
|                 | Full-Depth Pavement Repair                          | SY     | 1500          | \$<br>80.00        |          | 120,000.00   |
|                 | 2" Fine Milling                                     | SY     | 17300         | \$<br>6.00         |          | 103,800.00   |
|                 | HMA S0.5                                            | Tons   | 2000          | \$<br>150.00       | -        | 300,000.00   |
|                 | Concrete Sidewalk/Ramps                             | SF     | 14600         | \$<br>16.00        | \$       | 233,600.00   |
|                 | Bituminous Concrete Sidewalk (Bike Lane)            | SY     | 1000          | \$<br>65.00        | <u> </u> | 65,000.00    |
|                 | Storm Drainage Modifications                        | LS     | 1             | \$<br>120,000.00   | \$       | 120,000.00   |
|                 | Granite Curbing                                     | LF     | 6600          | \$<br>65.00        | \$       | 429,000.00   |
|                 | Pavement Markings                                   | LS     | 1             | \$<br>365,000.00   | \$       | 365,000.00   |
|                 | Police                                              | LS     | 1             | \$<br>225,000.00   | \$       | 225,000.00   |
|                 | Bus shelters                                        | EA     | 5             | \$<br>20,000.00    | \$       | 100,000.00   |
|                 | Traffic Signal Improvements                         | LS     | 1             | \$<br>2,400,000.00 | \$       | 2,400,000.00 |
| Major Items S   | Subtotal                                            |        |               |                    | \$       | 4,461,400    |
| Minor Items S   | Subtotal                                            | 15     | % of Line "A" |                    | \$       | 669,210      |
| Major and Mi    | nor Contract Items Subtotal (A + B)                 |        |               |                    | \$       | 5,130,610    |
| Other Item Al   | lowances                                            |        |               |                    |          |              |
| Clearing and G  | Grubbing                                            | 2      | % of Line "C" |                    | \$       | 102,612      |
| M & P of Traff  | fic                                                 | 6      | % of Line "C" |                    | \$       | 307,837      |
| Mobilization    |                                                     | 6      | % of Line "C" |                    | \$       | 307,837      |
| Construction S  | Staking                                             | 1      | % of Line "C" |                    | \$       | 51,306       |
| Other Items S   | ubtotal                                             |        |               |                    | \$       | 769,592      |
| CONTRACT SU     | JBTOTAL (C + D)                                     |        |               |                    | \$       | 5,900,202    |
|                 | ts (Simple Method)                                  |        |               |                    |          |              |
| Date of Estima  |                                                     | Jun-24 |               |                    |          |              |
| Anticipated Bi  |                                                     | Apr-25 |               |                    |          |              |
| Annual Inflatio |                                                     | 4%     |               |                    |          |              |
| Inflation Subt  |                                                     | 3.2%   | of Line "E"   |                    | \$       | 188,806      |
| TOTAL CONTR     | RACT COST ESTIMATE (E + F) (Rounded to nearest \$10 | 00)    |               |                    | \$       | 6,089,000    |
| LOTCIP Projec   | ct Costs Summary                                    |        |               |                    |          |              |
|                 | Estimate (Line "G")                                 |        |               |                    | \$       | 6,089,000    |
| Contingencies   |                                                     | 10%    |               |                    | \$       | 608,900      |
| Incidentals     |                                                     | 10%    |               |                    | \$       | 608,900      |
| ROW             |                                                     | LS     |               |                    |          | N/A          |
| Utilities       |                                                     | LS     |               |                    |          | N/A          |
|                 |                                                     |        |               |                    | \$       | 7,306,800    |

# Concept Cost Estimate | York Street Major and Minor Contract Items

| Item No.        | Item                                                 | Unit   | Quantity      | Unit \$            |    | Total Cost   |
|-----------------|------------------------------------------------------|--------|---------------|--------------------|----|--------------|
|                 | Full-Depth Pavement Repair                           | SY     | 3300          | \$<br>80.00        | \$ | 264,000.00   |
|                 | 2" Fine Milling                                      | SY     | 11700         | \$<br>6.00         |    | 70,200.00    |
|                 | HMA S0.5                                             | Tons   | 1350          | \$<br>150.00       | \$ | 202,500.0    |
|                 | Concrete Sidewalk/Ramps                              | SF     | 8000          | \$<br>16.00        |    | 128,000.0    |
|                 | Bituminous Concrete Sidewalk (Bike Lane)             | SY     | 700           | \$<br>65.00        | \$ | 45,500.00    |
|                 | Storm Drainage Modifications                         | LS     | 1             | \$<br>100,000.00   | \$ | 100,000.00   |
|                 | Granite Curbing                                      | LF     | 5800          | \$<br>65.00        | \$ | 377,000.00   |
|                 | Bus shelters                                         | EA     | 5             | \$<br>20,000.00    | \$ | 100,000.00   |
|                 | Pavement Markings                                    | LS     | 1             | \$<br>65,000.00    | \$ | 65,000.00    |
|                 | Police                                               | LS     | 1             | \$<br>225,000.00   | \$ | 225,000.00   |
|                 | Traffic Signal Improvements                          | LS     | 1             | \$<br>3,200,000.00 | \$ | 3,200,000.00 |
| Major Items S   | Subtotal                                             |        |               |                    | \$ | 4,777,200    |
| Minor Items S   | Subtotal                                             | 15     | % of Line "A" |                    | \$ | 716,580      |
| Major and Mi    | nor Contract Items Subtotal (A + B)                  |        |               |                    | \$ | 5,493,780    |
| Other Item Al   | lowances                                             |        |               |                    |    |              |
| Clearing and G  | Grubbing                                             | 2      | % of Line "C" |                    | \$ | 109,876      |
| M & P of Traff  | fic                                                  | 6      | % of Line "C" |                    | \$ | 329,627      |
| Mobilization    |                                                      | 6      | % of Line "C" |                    | \$ | 329,627      |
| Construction S  | Staking                                              | 1      | % of Line "C" |                    | \$ | 54,938       |
| Other Items S   | ubtotal                                              |        |               |                    | \$ | 824,068      |
| CONTRACT SU     | JBTOTAL (C + D)                                      |        |               |                    | \$ | 6,317,848    |
|                 | ts (Simple Method)                                   |        |               |                    |    |              |
| Date of Estima  |                                                      | Jun-24 |               |                    |    |              |
| Anticipated Bi  |                                                      | Apr-25 |               |                    |    |              |
| Annual Inflatio |                                                      | 4%     | (),           |                    | •  |              |
| Inflation Subt  |                                                      | 3.2%   | of Line "E"   |                    | \$ | 202,171      |
| TOTAL CONTR     | RACT COST ESTIMATE (E + F) (Rounded to nearest \$100 | 0)     |               |                    | \$ | 6,520,000    |
| LOTCIP Projec   | ct Costs Summary                                     |        |               |                    |    |              |
| Contract Cost   | Estimate (Line "G")                                  |        |               |                    | \$ | 6,520,000    |
| Contingencies   |                                                      | 10%    |               |                    | \$ | 652,000      |
| Incidentals     |                                                      | 10%    |               |                    | \$ | 652,000      |
| ROW             |                                                      | LS     |               |                    |    | N/A          |
| Utilities       |                                                      | LS     |               |                    |    | ,<br>N/A     |
| TOTAL PROJE     | ст соѕт                                              |        |               |                    | \$ | 7,824,000    |

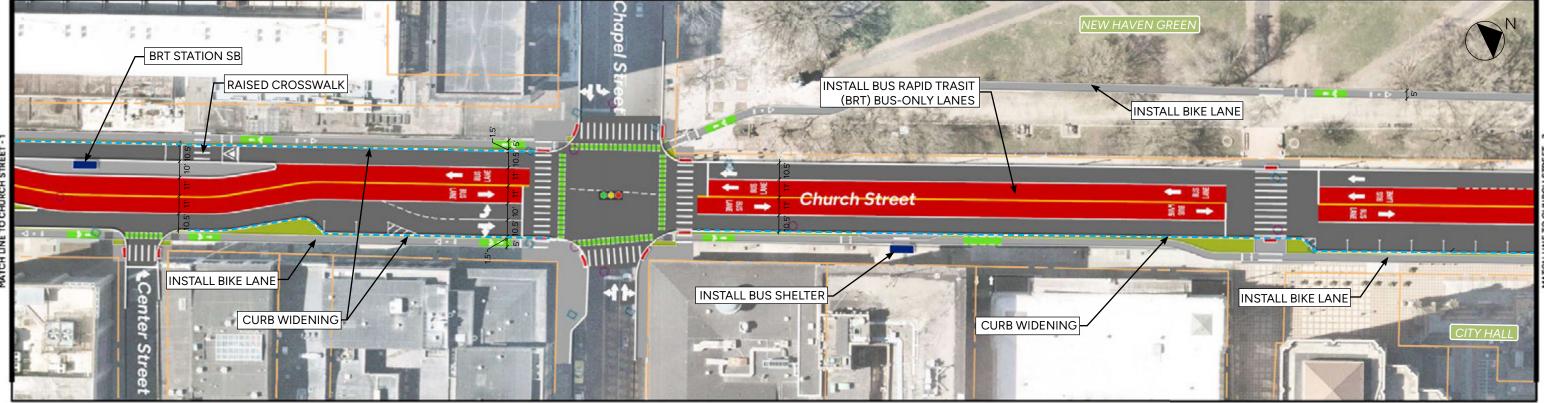
# Concept Cost Estimate | Chapel Street

| Item No.        | Item                                                | Unit   | Quantity      | Unit \$            |    | Total Cost  |
|-----------------|-----------------------------------------------------|--------|---------------|--------------------|----|-------------|
|                 | Full-Depth Pavement Repair                          | SY     | 1900          | \$<br>80.00        | \$ | 152,000.00  |
|                 | 2" Fine Milling                                     | SY     | 5500          | \$<br>6.00         |    | 33,000.00   |
|                 | HMA S0.5                                            | Tons   | 650           | \$<br>150.00       | -  | 97,500.00   |
|                 | Concrete Sidewalk/Ramps                             | SF     | 4400          | \$<br>16.00        | \$ | 70,400.0    |
|                 | Bituminous Concrete Sidewalk (Bike Lane)            | SY     | 100           | \$<br>65.00        | \$ | 6,500.0     |
|                 | Storm Drainage Modifications                        | LS     | 1             | \$<br>60,000.00    | \$ | 60,000.0    |
|                 | Granite Curbing                                     | LF     | 3200          | \$<br>65.00        | \$ | 208,000.0   |
|                 | Pavement Markings                                   | LS     | 1             | \$<br>20,000.00    | \$ | 20,500.0    |
|                 | Police                                              | LS     | 1             | \$<br>170,000.00   | \$ | 163,200.0   |
|                 | Bus shelters                                        | EA     | 1             | \$<br>20,000.00    | \$ | 20,000.0    |
|                 | Traffic Signal Improvements                         | LS     | 1             | \$<br>1,600,000.00 | \$ | 1,600,000.0 |
| Major Items S   | ubtotal                                             | •      | •             |                    | \$ | 2,431,100   |
| Minor Items S   | ubtotal                                             | 15     | % of Line "A" |                    | \$ | 364,665     |
| Major and Mi    | nor Contract Items Subtotal (A + B)                 |        |               |                    | \$ | 2,795,765   |
| Other Item Al   | lowances                                            |        |               |                    |    |             |
| Clearing and G  | Grubbing                                            | 2      | % of Line "C" |                    | \$ | 55,915      |
| M & P of Traff  | ìc                                                  | 6      | % of Line "C" |                    | \$ | 167,746     |
| Mobilization    |                                                     | 6      | % of Line "C" |                    | \$ | 167,746     |
| Construction S  | Staking                                             | 1      | % of Line "C" |                    | \$ | 27,958      |
| Other Items S   | ubtotal                                             |        |               |                    | \$ | 419,365     |
| CONTRACT SU     | JBTOTAL (C + D)                                     |        |               |                    | \$ | 3,215,130   |
|                 | s (Simple Method)                                   |        |               |                    |    |             |
| Date of Estima  |                                                     | Jun-24 |               |                    |    |             |
| Anticipated Bi  |                                                     | Apr-25 |               |                    |    |             |
| Annual Inflatio |                                                     | 4%     |               |                    |    |             |
| Inflation Subt  |                                                     | 3.2%   | of Line "E"   |                    | \$ | 102,884     |
| TOTAL CONTR     | ACT COST ESTIMATE (E + F) (Rounded to nearest \$100 | 0)     |               |                    | \$ | 3,318,000   |
| LOTCIP Projec   | t Costs Summary                                     |        |               |                    |    |             |
|                 | Estimate (Line "G")                                 |        |               |                    | \$ | 3,318,000   |
| Contingencies   |                                                     | 10%    |               |                    | \$ | 331,800     |
| Incidentals     |                                                     | 10%    |               |                    | \$ | 331,800     |
| ROW             |                                                     | LS     |               |                    | Ŧ  | N/A         |
|                 |                                                     | 20     |               |                    |    | ,/          |
| Utilities       |                                                     | LS     |               |                    |    | N//         |

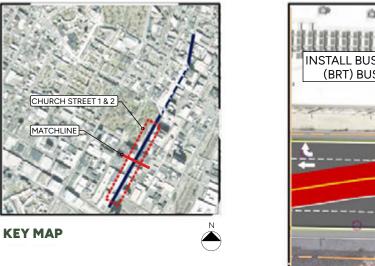
# Concept Cost Estimate | George Street

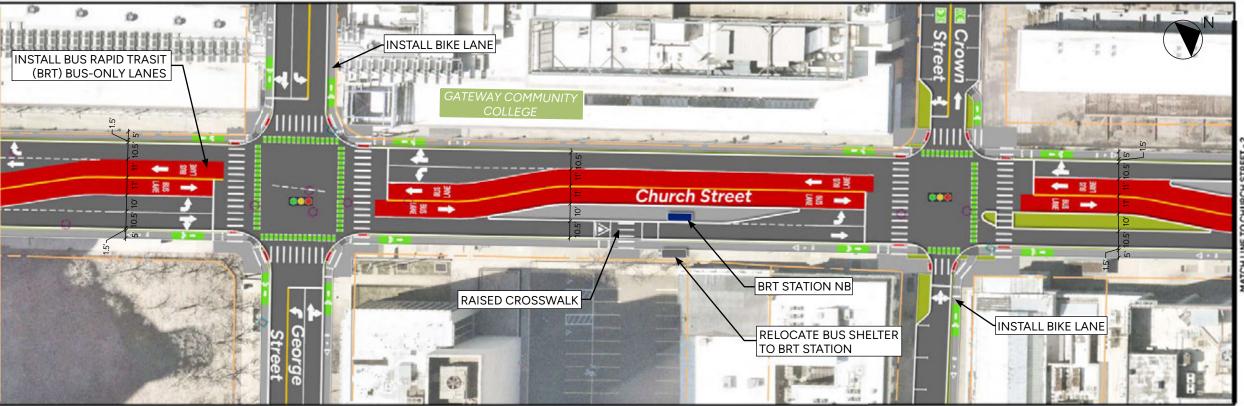
| Item No.           | Item                                                 | Unit   | Quantity      |    | Unit \$      |    | Total Cost  |
|--------------------|------------------------------------------------------|--------|---------------|----|--------------|----|-------------|
|                    | Full-Depth Pavement Repair                           | SY     | 1500          | \$ | 80.00        |    | 120,000.00  |
|                    | 2" Fine Milling                                      | SY     | 6600          | \$ | 6.00         |    | 39,600.00   |
|                    | HMA S0.5                                             | Tons   | 800           | \$ | 150.00       |    | 120,000.0   |
|                    | Concrete Sidewalk/Ramps                              | SF     | 5000          | \$ | 16.00        | \$ | 80,000.0    |
|                    | Bituminous Concrete Sidewalk (Bike Lane)             | SY     | 2200          | \$ | 65.00        | \$ | 143,000.0   |
|                    | Storm Drainage Modifications                         | LS     | 1             | \$ | 50,000.00    | \$ | 50,000.0    |
|                    | Granite Curbing                                      | LF     | 4200          | \$ | 65.00        | \$ | 273,000.0   |
|                    | Pavement Markings                                    | LS     | 1             | \$ | 40,000.00    | \$ | 40,000.0    |
|                    | Police                                               | LS     | 1             | \$ | 170,000.00   | \$ | 170,000.0   |
|                    | Bus shelters                                         | EA     | 6             | \$ | 20,000.00    | \$ | 120,000.0   |
|                    | Traffic Signal Improvements                          | LS     | 1             | \$ | 4,000,000.00 | \$ | 4,000,000.0 |
| Major Items S      | Subtotal                                             | ·      | •             |    |              | \$ | 5,155,600   |
| Minor Items S      |                                                      | 15     | % of Line "A" |    |              | \$ | 773,340     |
| Major and Mi       | inor Contract Items Subtotal (A + B)                 |        |               |    |              | \$ | 5,928,940   |
| Other Item Al      | llowances                                            |        |               |    |              |    |             |
| Clearing and C     | Grubbing                                             | 2      | % of Line "C" |    |              | \$ | 118,579     |
| M & P of Traf      | fic                                                  | 6      | % of Line "C" |    |              | \$ | 355,736     |
| Mobilization       |                                                      | 6      | % of Line "C" |    |              | \$ | 355,736     |
| Construction :     | Staking                                              | 1      | % of Line "C" |    |              | \$ | 59,289      |
| Other Items S      | Subtotal                                             |        |               |    |              | \$ | 889,340     |
| CONTRACT SU        | JBTOTAL (C + D)                                      |        |               |    |              | \$ | 6,818,280   |
| r                  | ts (Simple Method)                                   |        |               |    |              |    |             |
| Date of Estimation |                                                      | Jun-24 |               |    |              |    |             |
| Anticipated Bi     |                                                      | Apr-25 |               |    |              |    |             |
| Annual Inflatio    | -                                                    | 4%     |               |    | 1            | _  |             |
| Inflation Subt     |                                                      | 3.2%   | of Line "E"   |    |              | \$ | 218,185     |
| TOTAL CONTR        | RACT COST ESTIMATE (E + F) (Rounded to nearest \$100 | JU)    |               |    |              | \$ | 7,036,000   |
|                    | ct Costs Summary                                     |        |               |    |              |    |             |
| Contract Cost      | Estimate (Line "G")                                  |        |               |    |              | \$ | 7,036,000   |
| Contingencies      | 5                                                    | 10%    |               |    |              | \$ | 703,600     |
| Incidentals        |                                                      | 10%    |               |    |              | \$ | 703,60      |
| ROW                |                                                      | LS     |               |    |              |    | N//         |
| Utilities          |                                                      | LS     |               |    |              |    | N//         |
|                    |                                                      |        |               | _  |              | _  |             |




# Appendix E Concepts

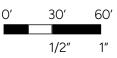
# New Haven One-Way to Two-Way Conversion Study: Final Report

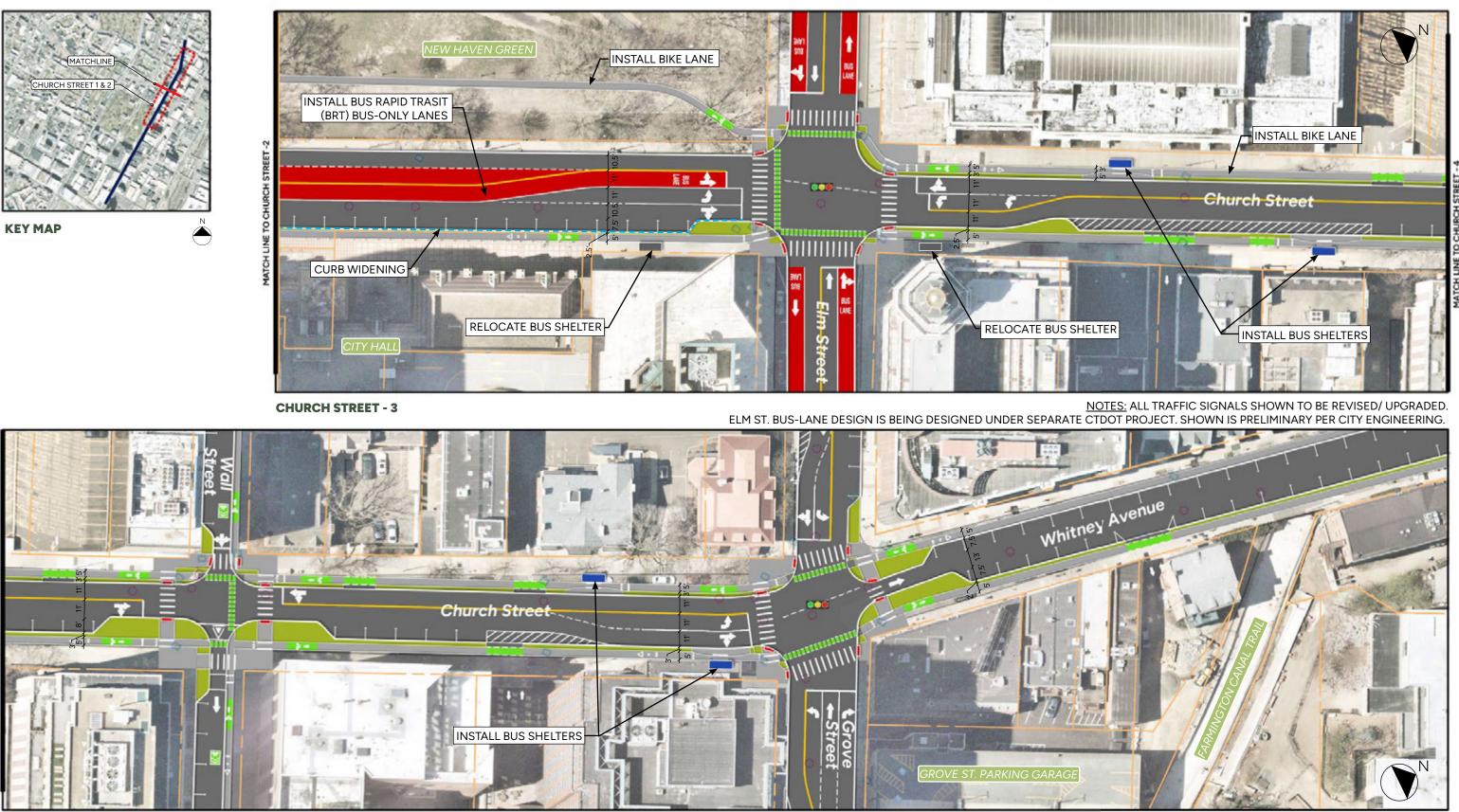

South Central Regional Council of Governments (SCRCOG)/City of New Haven SLR Project No.: 141.20130.00003




**CHURCH STREET - 2** 

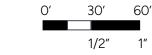



**CHURCH STREET - 1** 



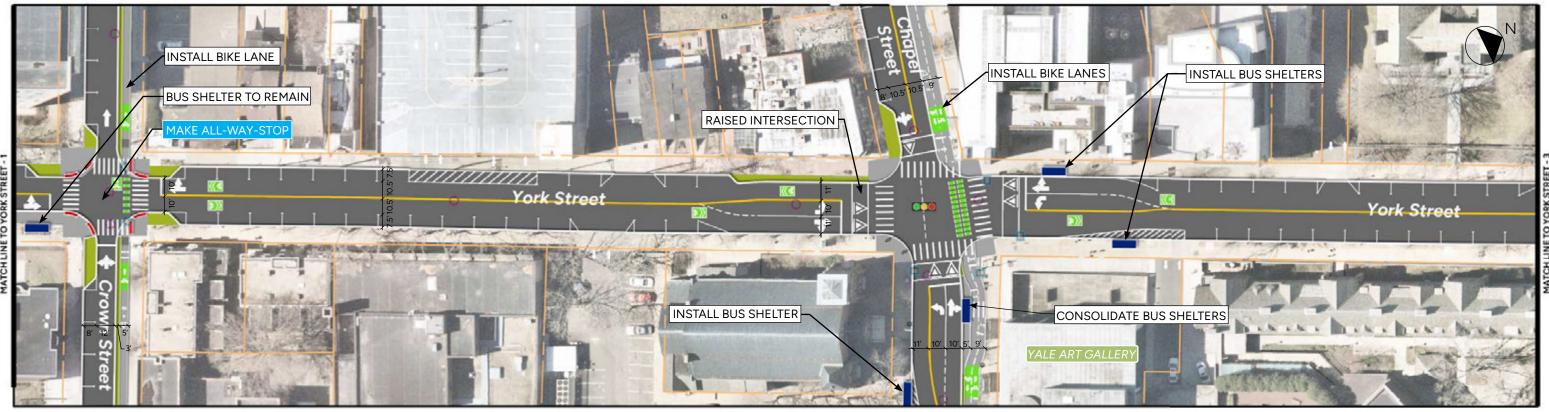



**%SLR** 


NOTES: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED. TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.





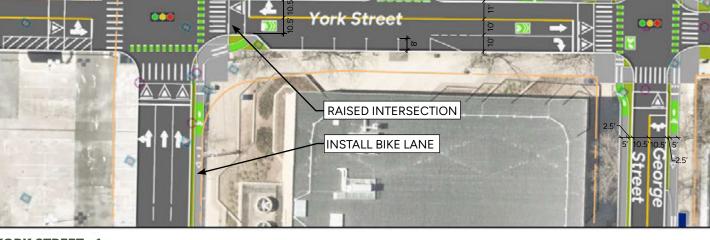

**CHURCH STREET - 4** 

CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - CHURCH STREET ₩SLR



### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - YORK STREET

YORK STREET - 2




**YORK STREET - 1** 

BLVD

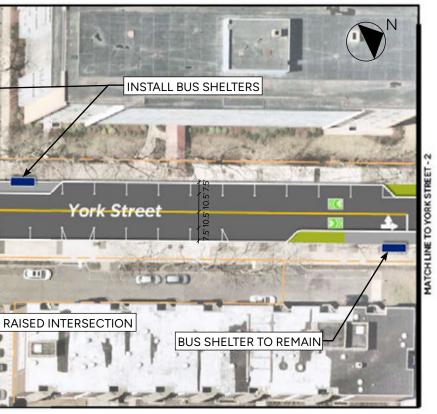
 $\land \land \land$ 

Ш



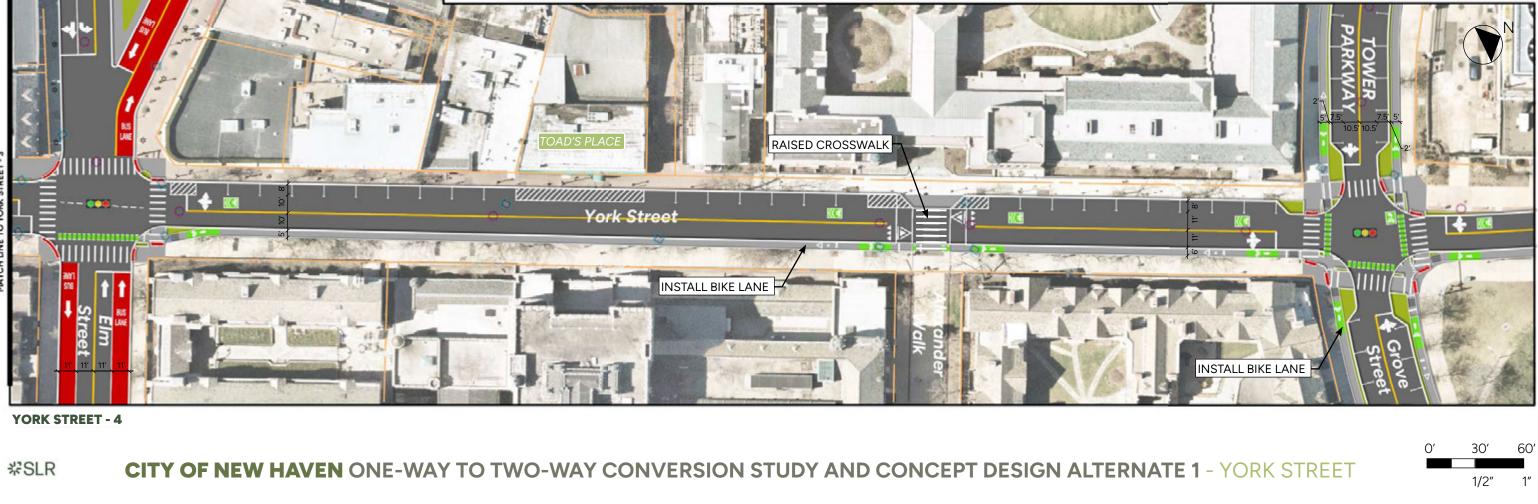
N. K. C INSTALL BIKE LANE

**Fills** 


100 THE

100

ШП



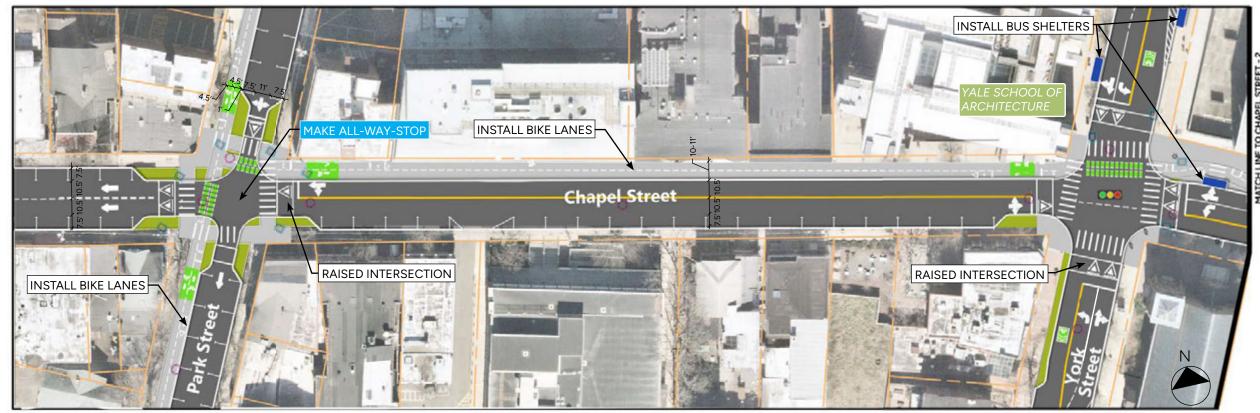

**KEY MAP** 



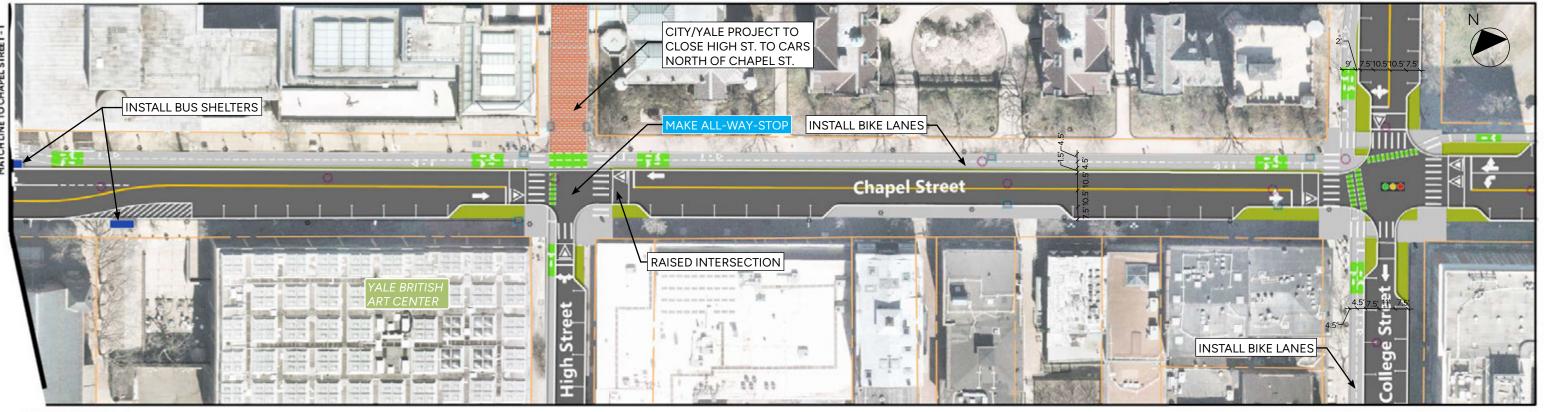
NOTE: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED.

30′ 60'  $\cap$ 1/2″ 1″





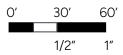

YORK STREET 3 & 4 ΚΕΥ ΜΑΡ


Broadway



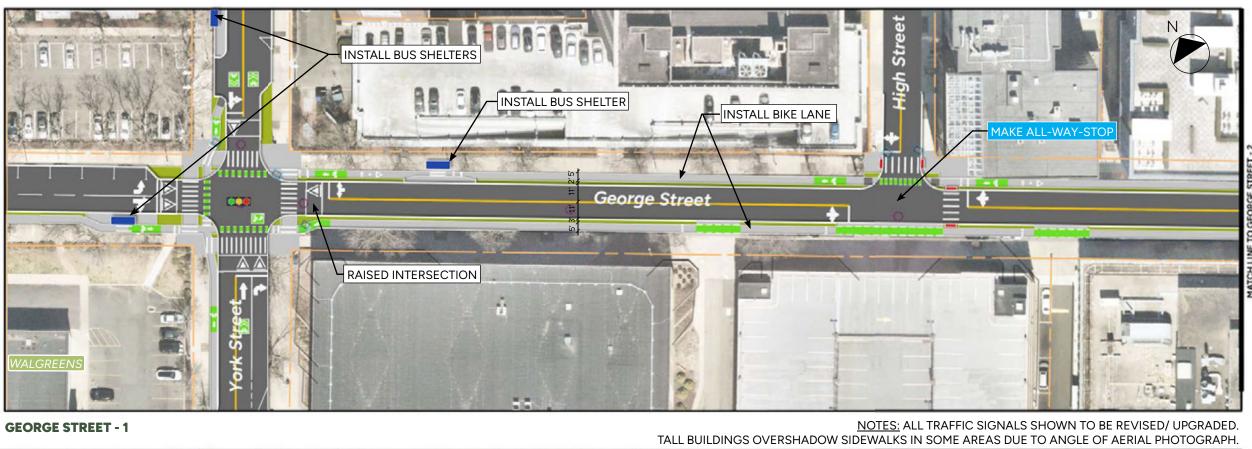
**KEY MAP** 




**CHAPEL STREET - 1** 

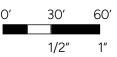


**CHAPEL STREET - 2** 


**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - CHAPEL STREET

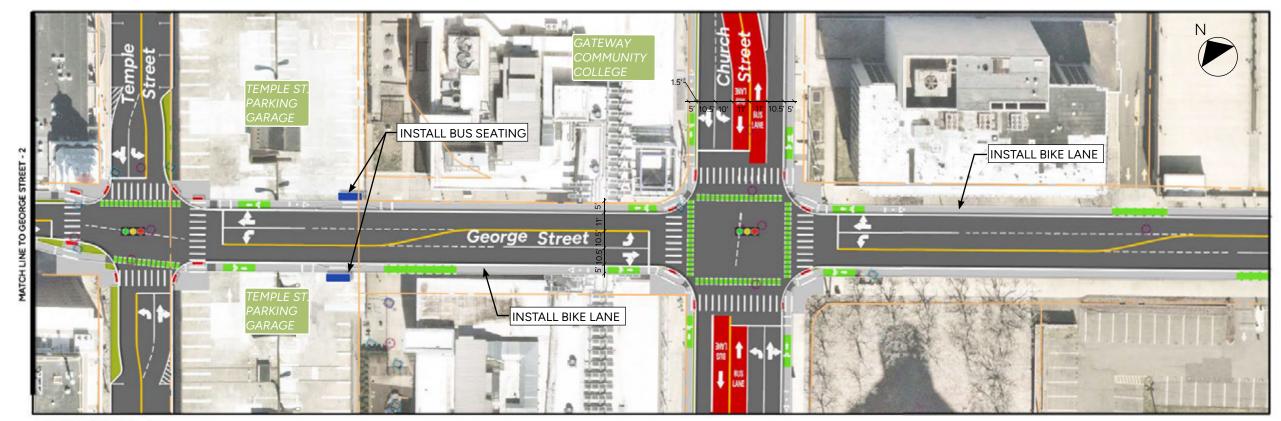
<u>NOTES:</u> ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED. TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.





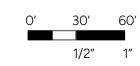

**KEY MAP** 






**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 1 - GEORGE STREET

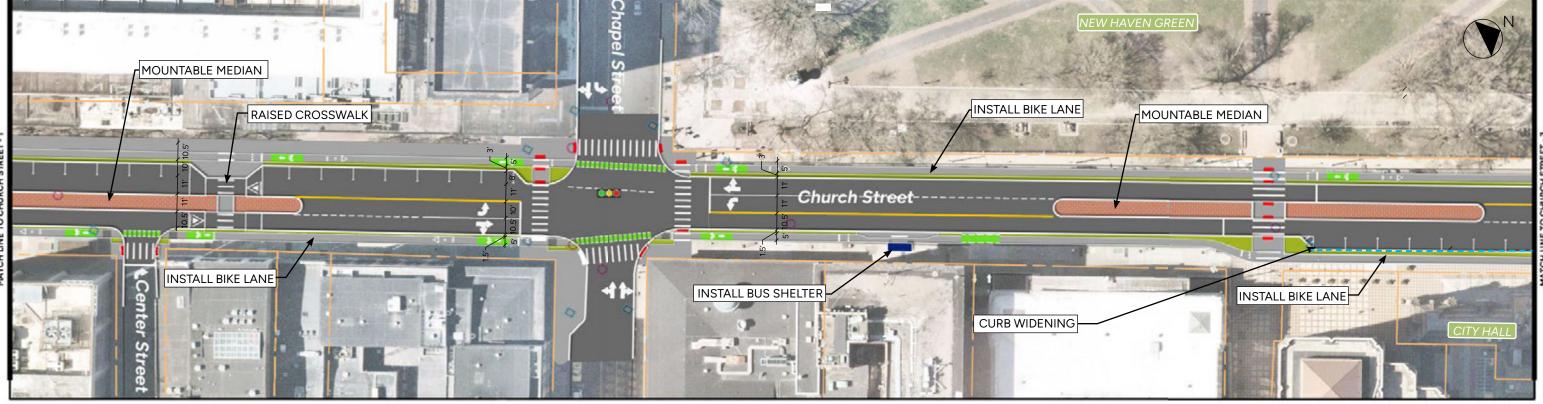




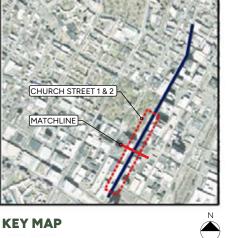

**KEY MAP** 



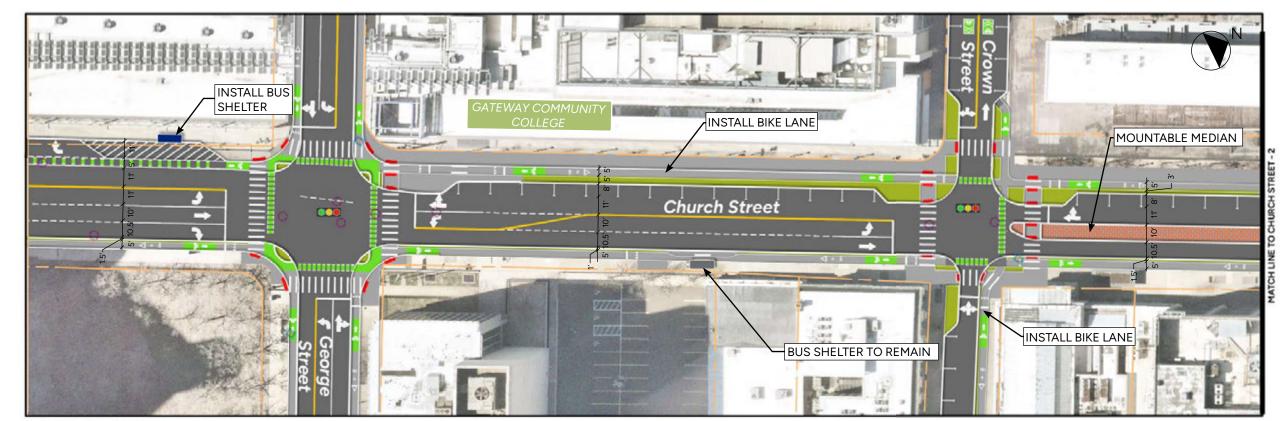
**GEORGE STREET - 3** 


NOTE: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED.

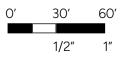


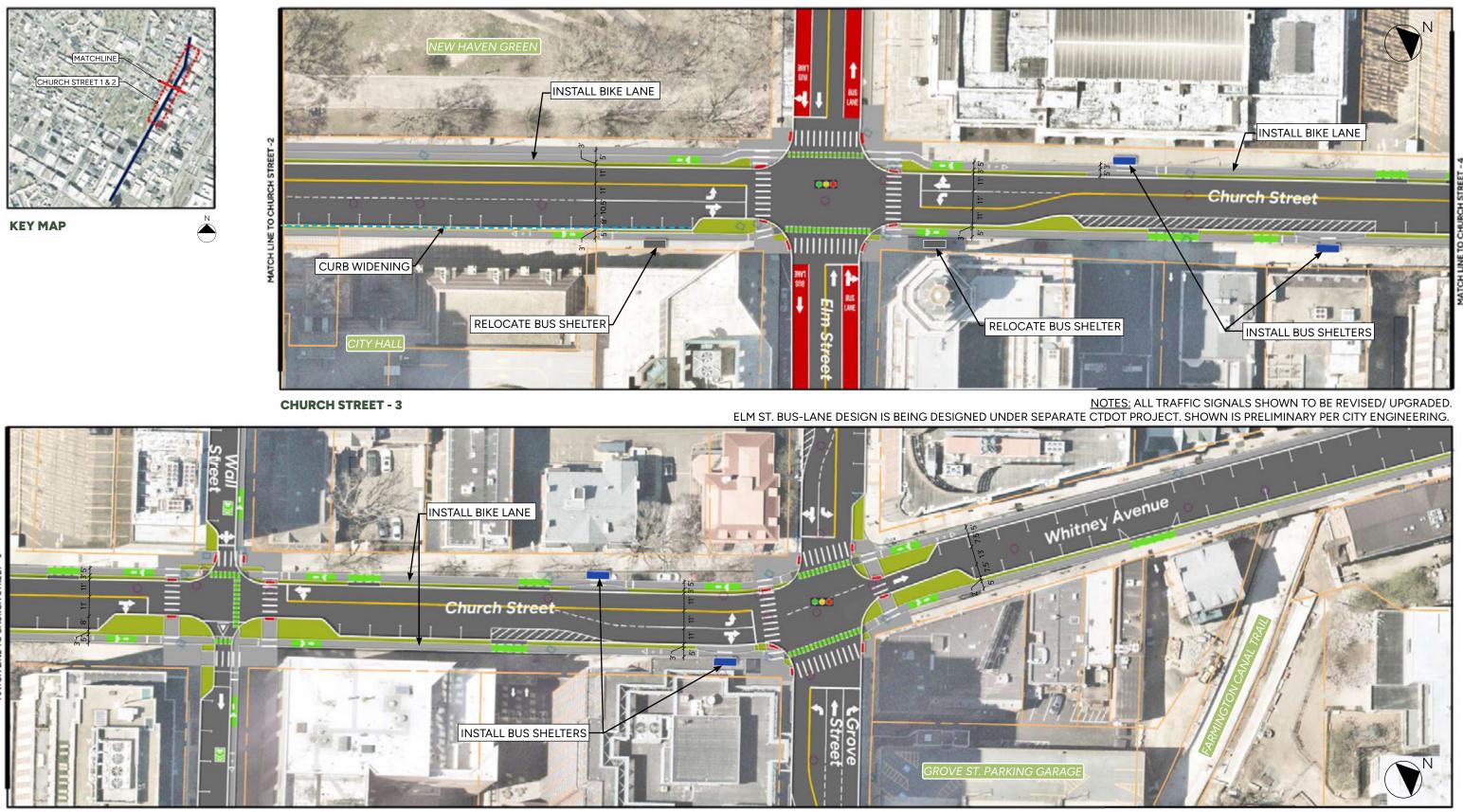

17

### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - CHURCH STREET


**CHURCH STREET - 2** 

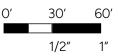



**CHURCH STREET - 1** 



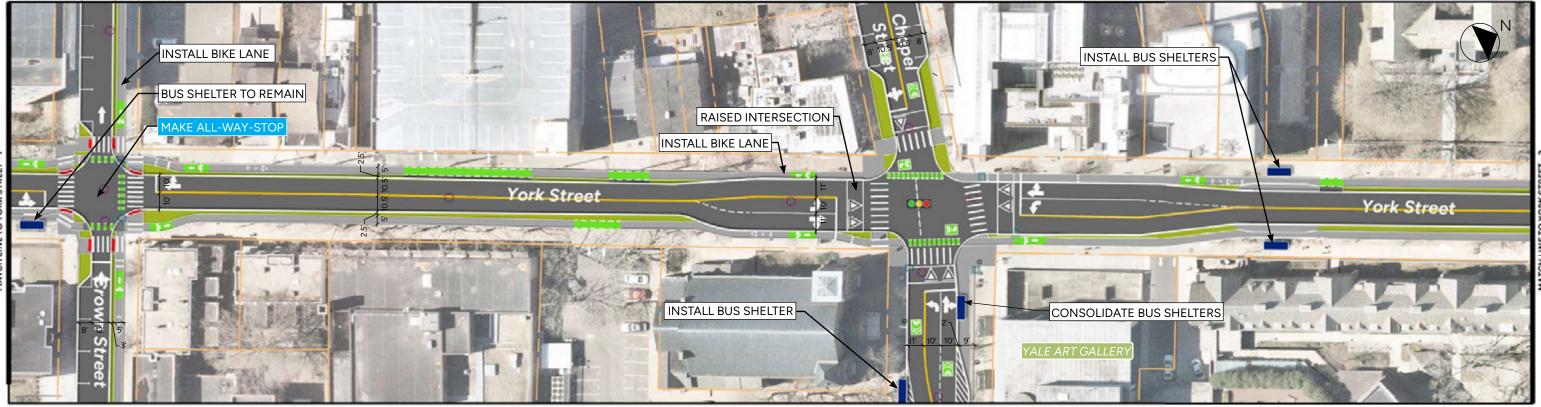






NOTES: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED. TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.





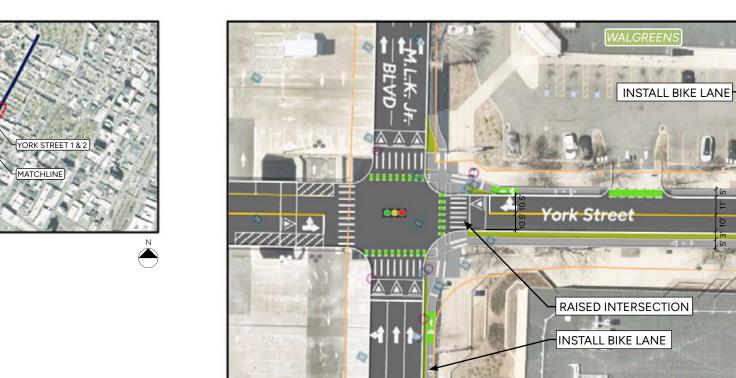

**CHURCH STREET - 4** 





# CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - YORK STREET

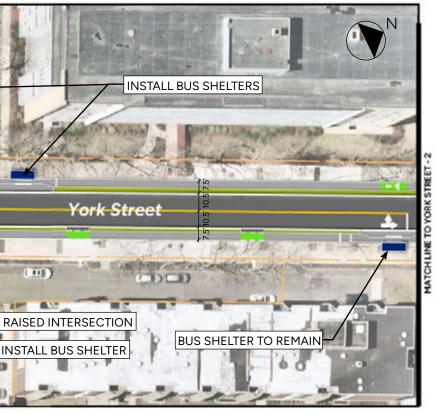
YORK STREET - 2




CUD

1000

01

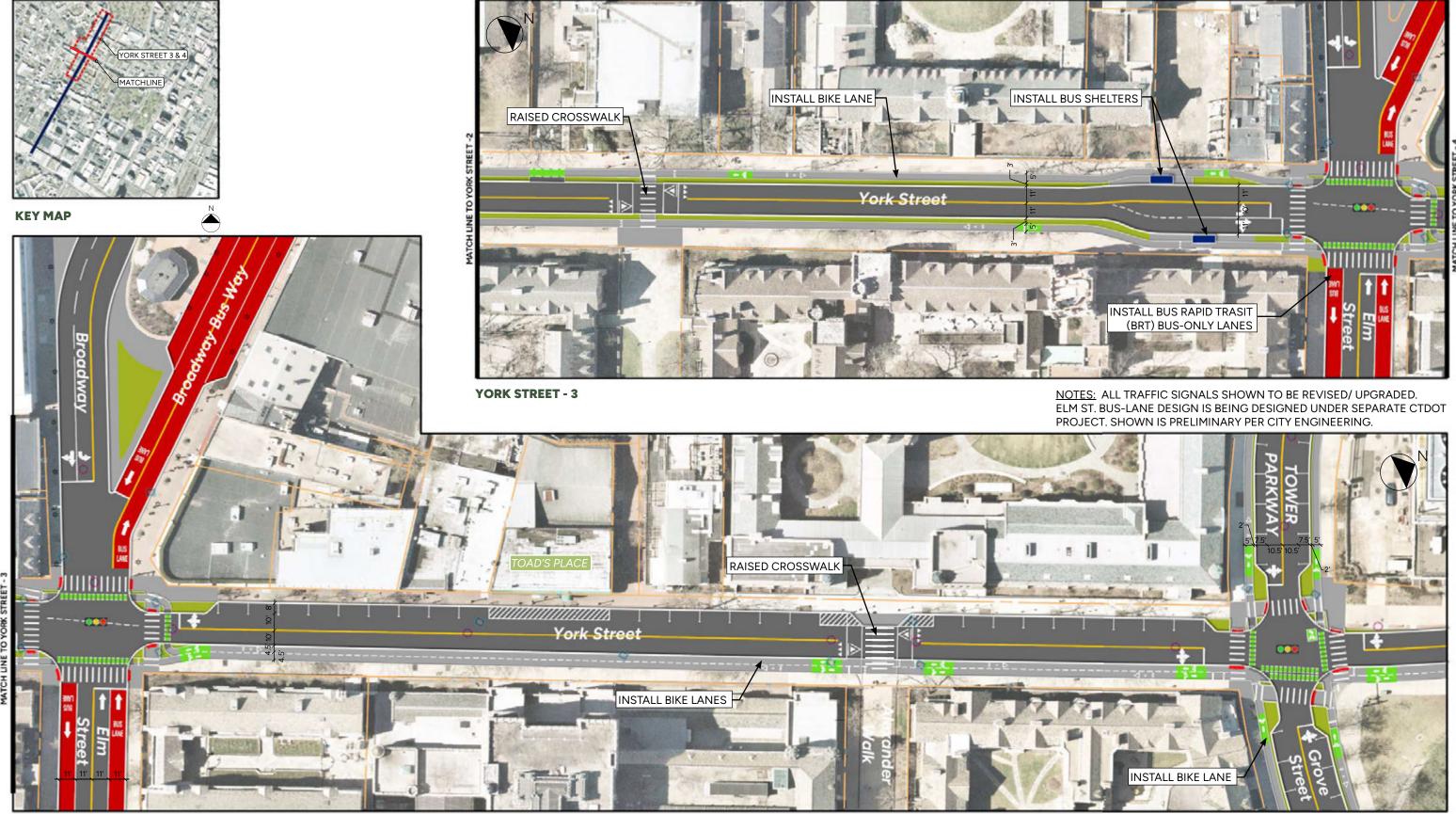




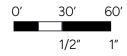


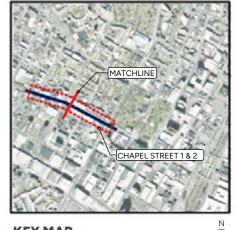

**KEY MAP** 

**%SLR** 

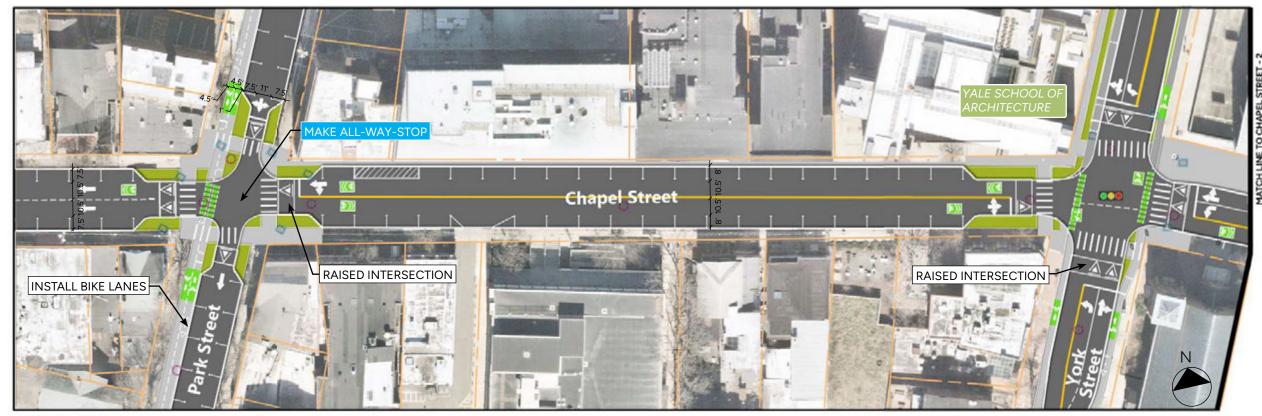



NOTE: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED.

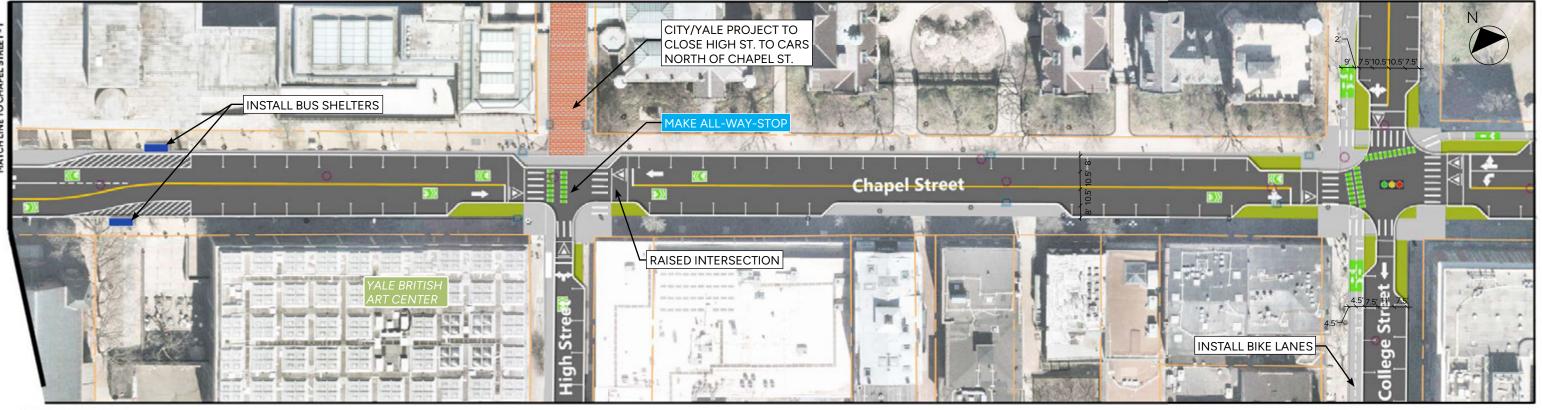

30′ 60' 1/2" 1"




YORK STREET - 4



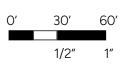

∜SLR






**KEY MAP** 




**CHAPEL STREET - 1** 

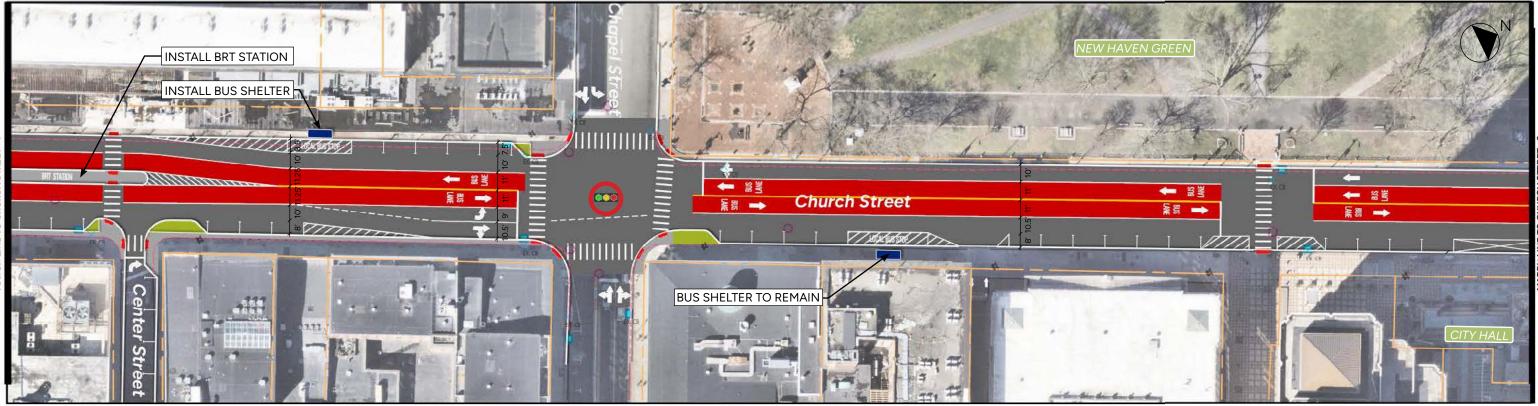


**CHAPEL STREET - 2** 

**%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND CONCEPT DESIGN ALTERNATE 2 - CHAPEL STREET

NOTES: ALL TRAFFIC SIGNALS SHOWN TO BE REVISED/ UPGRADED. TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.

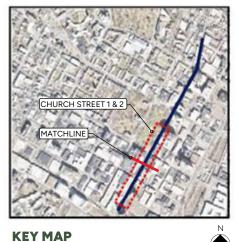


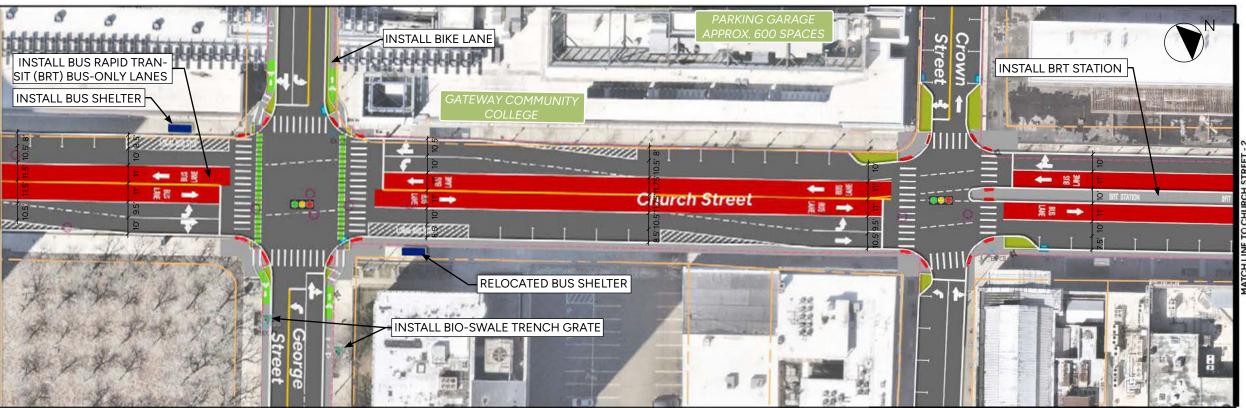

17

# **CONCEPT ONLY - NOT FOR CONSTRUCTION**

### **%SLR** CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - CHURCH STREET

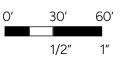
**CHURCH STREET - 2** 


NOTES: CHURCH STREET BUS LANES SUBJECT TO CHANGE PER CTDOT BRT PROJECT.

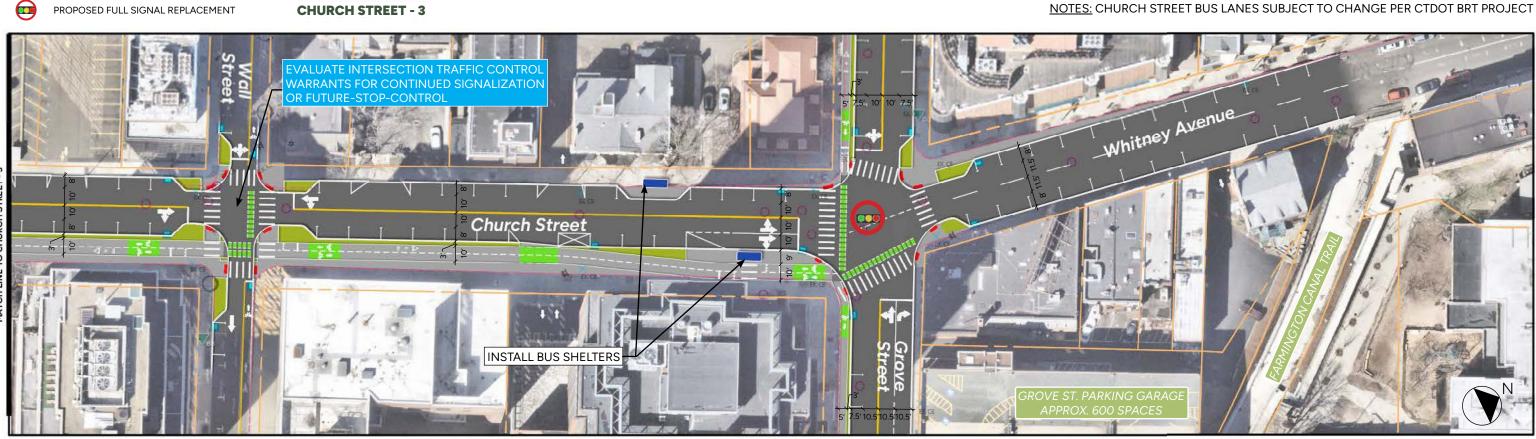



- PROPOSED FULL SIGNAL REPLACEMENT
- PROPOSED SIGNAL MODIFICATION
- PROPERTY LINE
- EXISTING EDGE OF PAVEMENT (GIS approx)
- EXISTING STREET LIGHT r'r
- 蚶
- EXISTING FIRE HYDRANT
- EXISTING MANHOLE  $\circ$
- EXISTING CATCH BASIN

## PROPOSED CATCH BASIN


## LEGEND



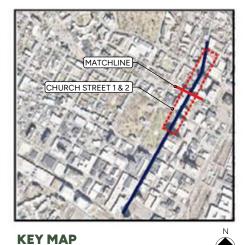


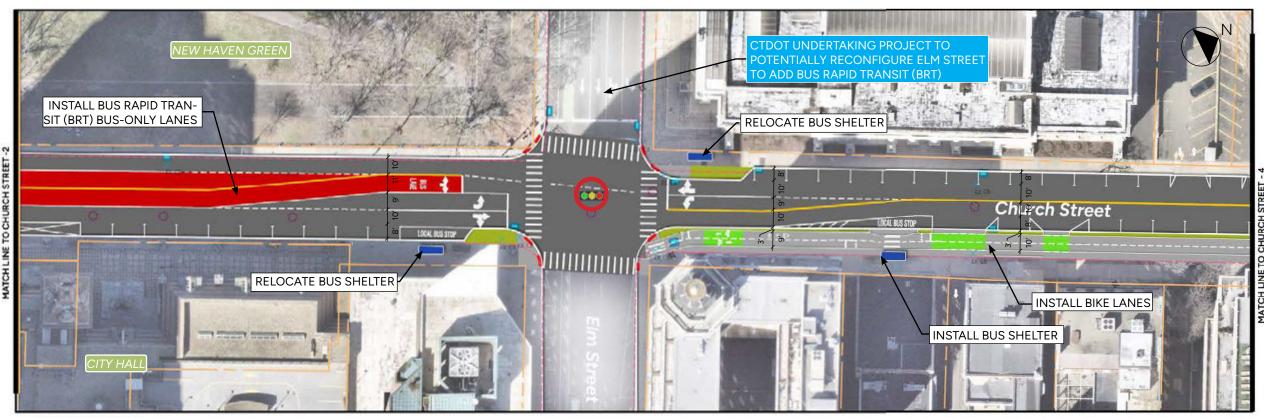

**CHURCH STREET - 1** 

NOTES: TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH. CHURCH STREET BUS LANES SUBJECT TO CHANGE PER CTDOT BRT PROJECT.



### **CHURCH STREET - 4**

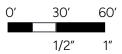




### PROPOSED SIGNAL MODIFICATION

- PROPERTY LINE
- xx EXISTING EDGE OF PAVEMENT (GIS approx)

- 22 EXISTING STREET LIGHT
- EXISTING FIRE HYDRANT
- EXISTING MANHOLE 0
- EXISTING CATCH BASIN ×
- PROPOSED CATCH BASIN

# LEGEND






# **CONCEPT ONLY - NOT FOR CONSTRUCTION**

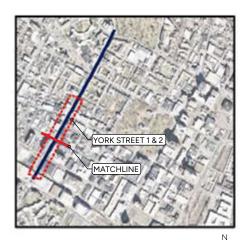
NOTES: CHURCH STREET BUS LANES SUBJECT TO CHANGE PER CTDOT BRT PROJECT

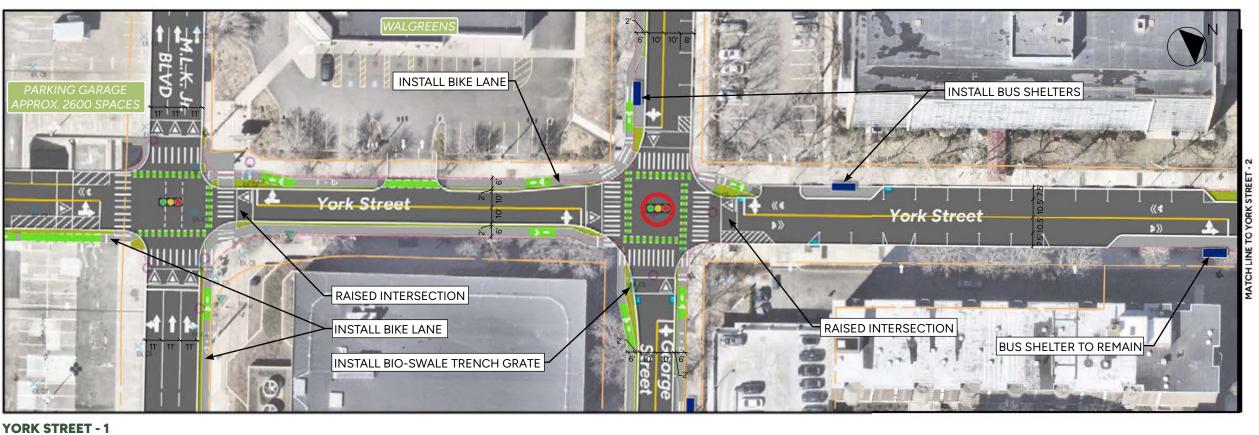
NOTES: TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH.

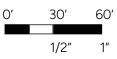


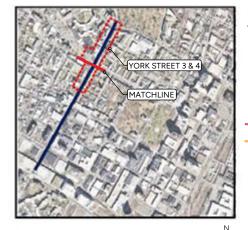
### #SLR CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - YORK STREET

YORK STREET - 2





- PROPOSED FULL SIGNAL REPLACEMENT
- PROPOSED SIGNAL MODIFICATION
- PROPERTY LINE
- EXISTING EDGE OF PAVEMENT (GIS approx)

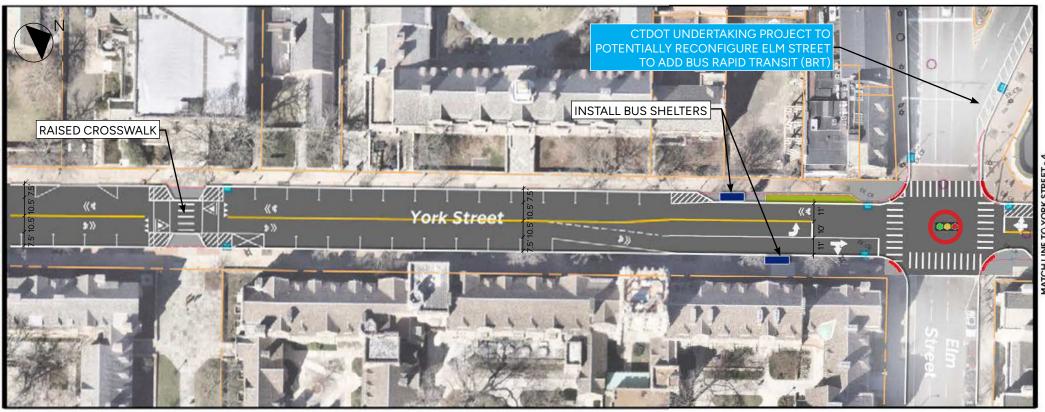

- EXISTING STREET LIGHT x'x
- EXISTING FIRE HYDRANT 蚶
- EXISTING MANHOLE 0
- EXISTING CATCH BASIN ×
- PROPOSED CATCH BASIN

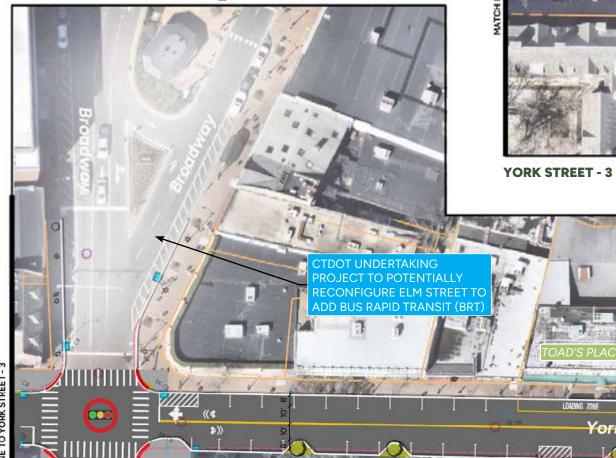

# LEGEND

## **KEY MAP**







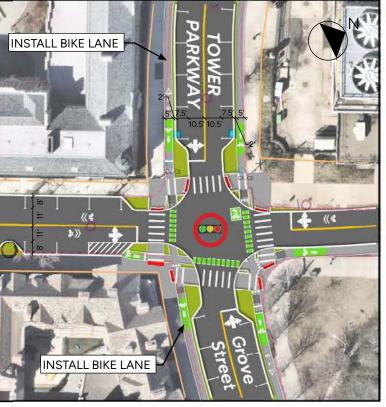



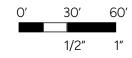

### LEGEND

- PROPOSED CATCH BASIN
- EXISTING CATCH BASIN × 0 EXISTING MANHOLE
- EXISTING FIRE HYDRANT
- EXISTING STREET LIGHT rh
- EXISTING EDGE OF PAVEMENT (GIS approx) PROPERTY LINE
- PROPOSED SIGNAL MODIFICATION ....
- PROPOSED FULL SIGNAL REPLACEMENT

**KEY MAP** 

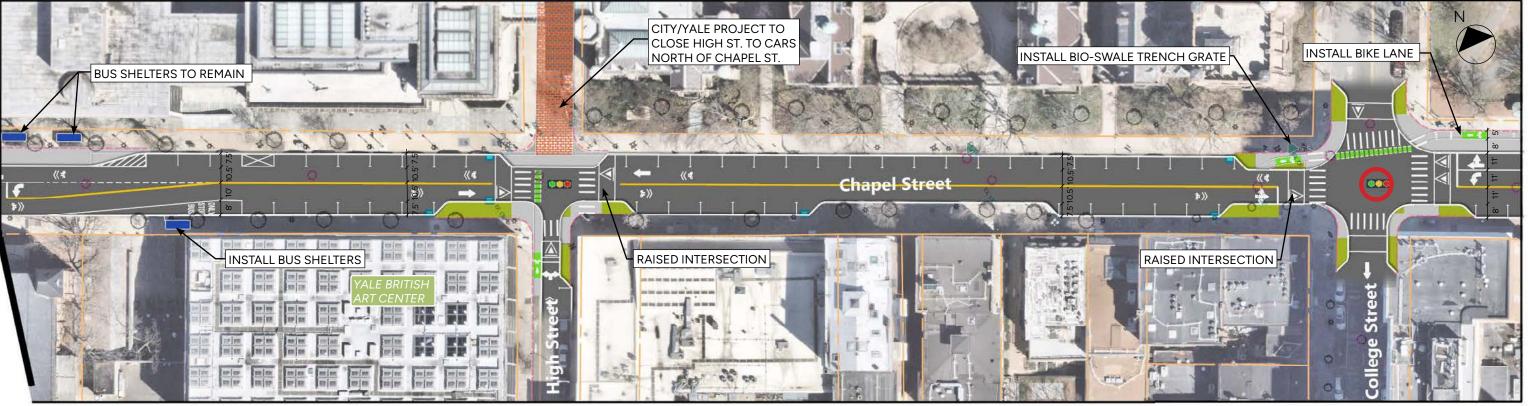





RAISED CROSSWALK VIIIND. 13TIL **York Street (**( \* **(**( 2 0

**YORK STREET - 4** 

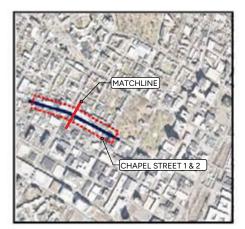

#SLR CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - YORK STREET





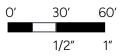
### #SLR CITY OF NEW HAVEN ONE-WAY TO TWO-WAY CONVERSION STUDY AND PREFERRED CONCEPT DESIGN - CHAPEL STREET

### **CHAPEL STREET - 2**

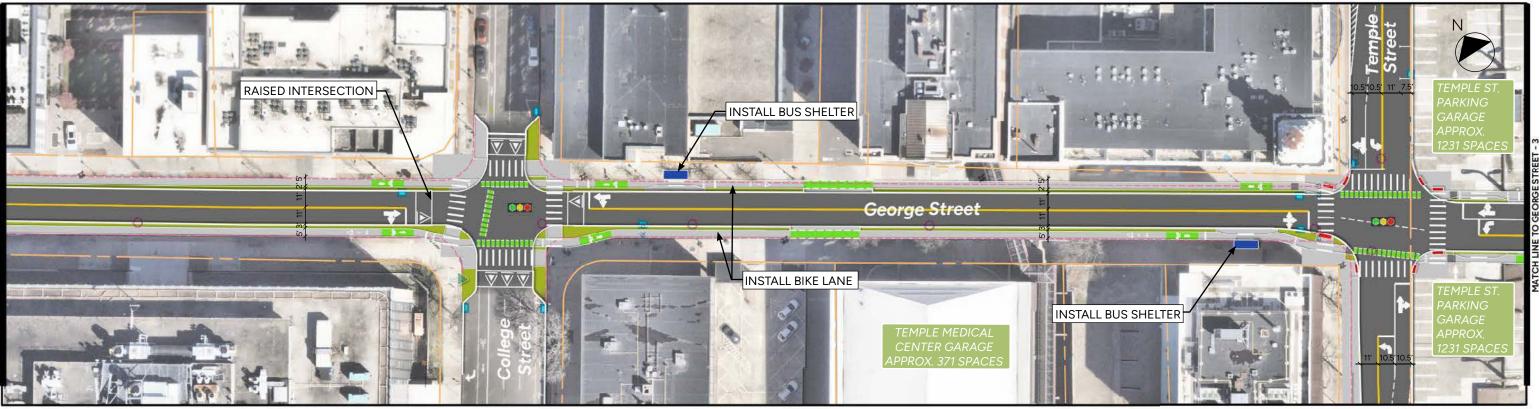



- PROPOSED FULL SIGNAL REPLACEMENT
- PROPOSED SIGNAL MODIFICATION
- PROPERTY LINE
- EXISTING EDGE OF PAVEMENT (GIS approx)
- EXISTING STREET LIGHT x'x
- EXISTING FIRE HYDRANT 蚶
- 0 EXISTING MANHOLE
- EXISTING CATCH BASIN ×

### PROPOSED CATCH BASIN -


### LEGEND

### **KEY MAP**




## **CHAPEL STREET - 1**





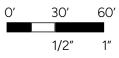

**GEORGE STREET - 2** 

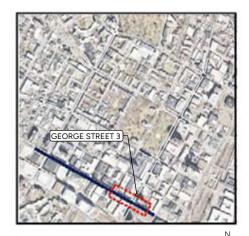


- PROPOSED FULL SIGNAL REPLACEMENT
- PROPOSED SIGNAL MODIFICATION
- PROPERTY LINE
- EXISTING EDGE OF PAVEMENT (GIS approx)
- EXISTING STREET LIGHT xx
- EXISTING FIRE HYDRANT 22
- EXISTING MANHOLE 0
- EXISTING CATCH BASIN ×
- PROPOSED CATCH BASIN -

### LEGEND

### **KEY MAP**



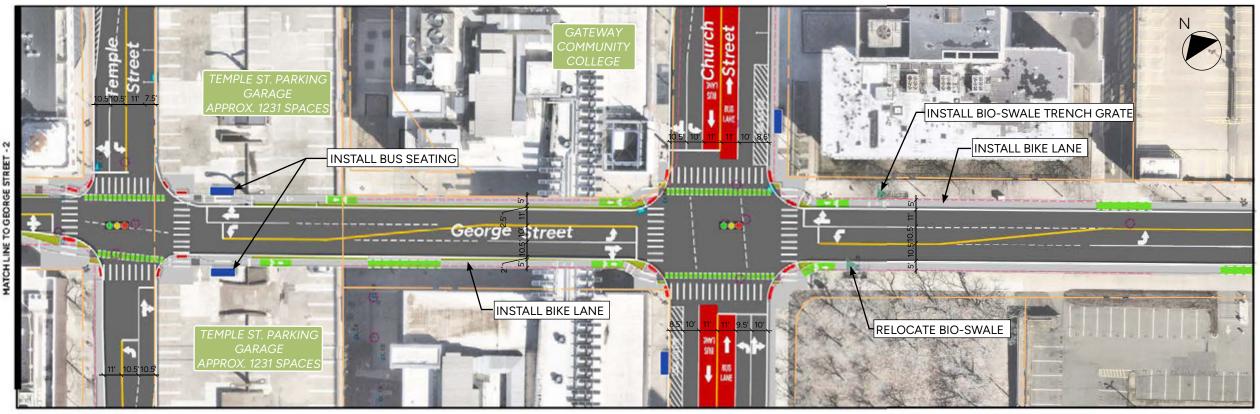





NOTES: TALL BUILDINGS OVERSHADOW SIDEWALKS IN SOME AREAS DUE TO ANGLE OF AERIAL PHOTOGRAPH



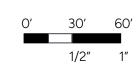



### **KEY MAP**

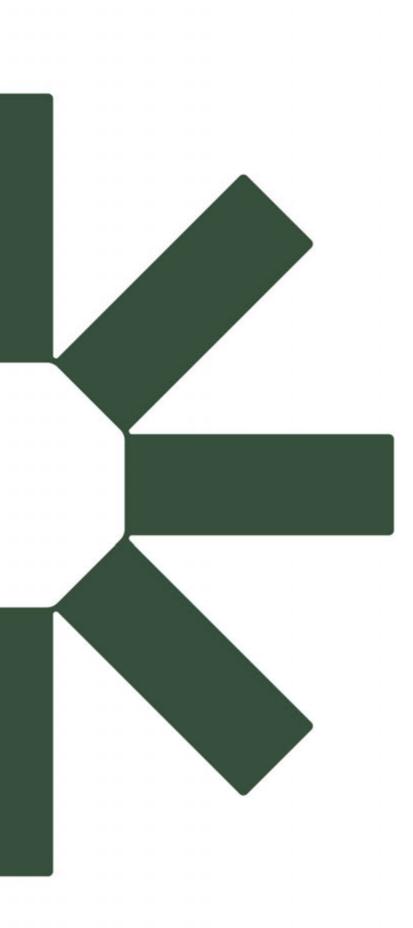
### LEGEND

- PROPOSED CATCH BASIN \_
- EXISTING CATCH BASIN X
- 0 EXISTING MANHOLE
- EXISTING FIRE HYDRANT 蚶
- EXISTING STREET LIGHT 软
- EXISTING EDGE OF PAVEMENT (GIS approx) \_ \_ \_

PROPERTY LINE


- PROPOSED SIGNAL MODIFICATION ....
- PROPOSED FULL SIGNAL REPLACEMENT




**GEORGE STREET - 3** 

# **CONCEPT ONLY - NOT FOR CONSTRUCTION**

NOTE: CHURCH STREET BUS LANES SUBJECT TO CHANGE PER CTDOT BRT PROJECT.



5



Making Sustainability Happen